ACCELERATE RESOURCES Ltd AX8

30 November 2023 ASX : AX8 Maiden Mineral Resources and Exploration Targets Demonstrate the Upside Potential of the Woodie Woodie North Manganese Project

HIGHLIGHTS

- A global maiden Mineral Resource estimate of **1.2Mt at 19.1% Mn** (15% Mn cut-off) based on Accelerate's recent 2022-2023 drilling campaigns and historical drilling at Area 42 and Barra North and Barra South
- Area 42 delivers largest mineral resource of 0.7Mt at 20.7% Mn (15% Mn cut-off)
- Results from preliminary Heavy Media Separation (HMS) testwork completed in May 2022 on a 150kg composite surface sample from Area 42 indicate manganese can be upgraded to a 43.4% Mn premium concentrate, and has Direct Shipping Ore (DSO) potential with an average lump and fine grade of 41.4% Mn and 13.6% Fe
- The maiden Mineral Resources combined with Exploration Target estimates confirm the project's high grade and scale potential
- Phase 5 RC drilling program proposed for the 2024 field season, including a possible diamond drilling program for further metallurgical testwork

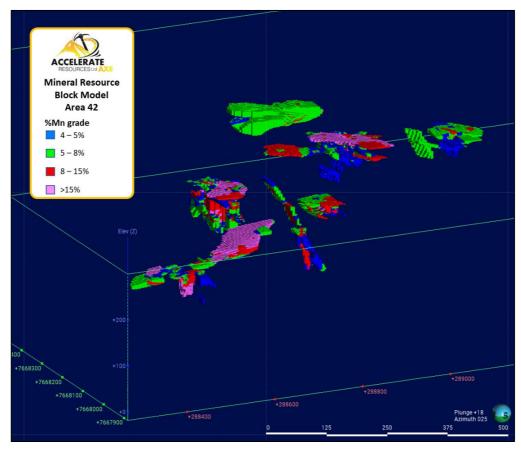


Figure 1 – 3D isometric view of the Area 42 Mineral Resource Block Model looking northeast.

Accelerate Resources Limited ("Accelerate" or the "Company") is pleased to announce maiden inferred Mineral Resources totalling 1.2Mt at 19.1% Mn (at 15% Mn cut-off) and Exploration Targets totalling 5.3 – 10.7Mt at 10 – 19% Mn for the Woodie Woodie North Manganese Project in Western Australia's Pilbara Region (Figures 2 and 3).

The Company engaged independent resource consultancy ERM Group Company (previously CSA Global) to complete the Mineral Resources and Exploration Target estimate. The results are reported in accordance with the JORC Code (2012 Edition).

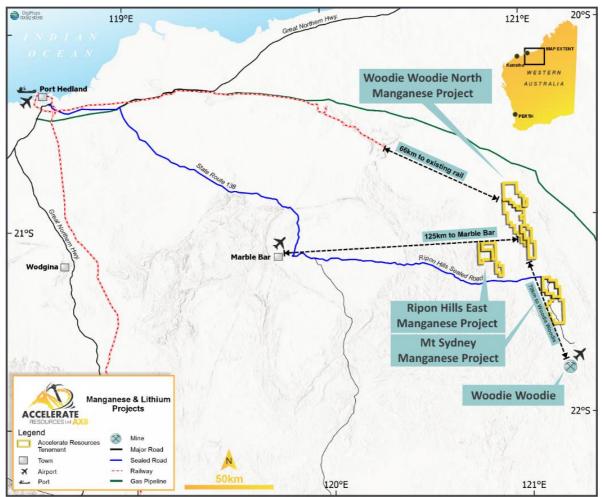
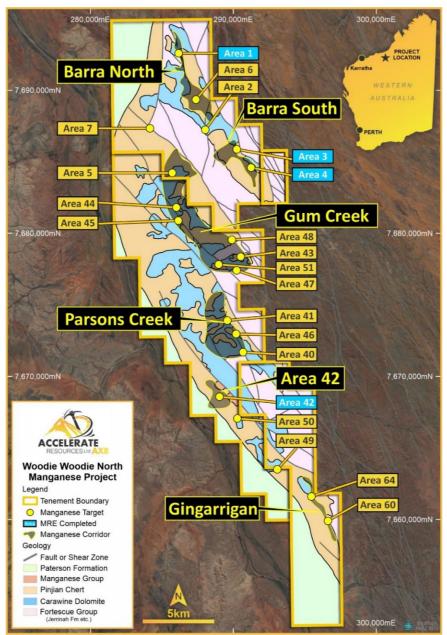



Figure 2 – Location of the Woodie Woodie North Project.

Accelerate's Executive Director - Technical, Steve Bodon, commented, "The maiden Mineral Resources represent a significant step forward for the Woodie Woodie North Project and our shareholders. We are focused on growing the Mineral Resource inventory over the project area, and the Company is well positioned to achieve this with the significant upside opportunity the Exploration Targets present."

Figure 3 – Location of Mineral Resources at Barra North Area 1, Barra South Areas 3 and 4, and Area 42.

In terms of the JORC Code (2012), the Competent Person believes there are reasonable prospects for eventual economic extraction of the Mineral Resources based on the following:

- Demonstrated continuity of siliceous chert alteration including high grade Mn zones.
- All prospects have further potential for extension of mineralisation both along and across strike of the modelled orebodies.
- Metallurgical testwork has indicated the possibility of successful upgrade of the Mn ore to concentrate grade.

Maiden Mineral Resources

Maiden inferred Mineral Resources totalling **1.2Mt at 19.1% Mn** (at 15% Mn cut-off) within the Woodie Woodie North Project area have been estimated in accordance with the JORC 2012 Code and are summarised in Table 1 below. Reporting of Material Mineral Resource Estimates in terms of ASX Listing Rule 5.8 can be found in Appendix 1 and JORC Table 1 information in Appendix 2.

Estimation of the Mineral Resources was based on the integration of historical drilling data and the Company's recent Phase 1 to 4 Reverse Circulation (RC) drilling campaigns completed during 2022 and 2023 at the Barra North Area 1, Barra South Areas 3 and 4, and Area 42 (Figure 3). The drilling dataset used for the Mineral Resource Estimate (MRE) comprises a total of 398 drill holes for 26,952m, details of which are summarised in Appendix 3.

The current geological understanding of the geometry of the mineralised manganese occurrences used in the estimate was developed by the interpretation of the drilling results to date, supported by additional detailed surface mapping. Representative cross sections of the MRE areas are shown Figures 4 to 7.

A cut-off of 15% Mn was considered reasonable for reporting of the Mineral Resources based on analogous geological setting and mineralisation styles to the Woodie Woodie mining camp. Lowering the cut-off to 10% Mn results in a larger tonnage, lower grade Mineral Resource estimate totalling **3.0Mt at 14.7% Mn** (see Table 1 below).

Area	JORC Classification	Tonnes (Mt)	% Mn	% Fe	% SiO ₂	% Al ₂ O ₃	% P
Area 1	Indicated	-	-	-	-	-	-
Area I	Inferred	0.04 (0.2)	17.2 <i>(12.8)</i>	14.6 <i>(15.6)</i>	25.8 <i>(29.5)</i>	2.2 (2.5)	0.1 (0.2)
Sub-total	Indicated + Inferred	0.04 (0.2)	17.2 <i>(12.8)</i>	14.6 <i>(15.6)</i>	25.8 <i>(29.5)</i>	2.2 (2.5)	0.1 (0.2)
Aroa 2	Indicated	-	-	-	-	-	-
Area 3	Inferred	0.3 (1.0)	17.5 <i>(13.3)</i>	20.1 (20.0)	27.9 <i>(35.7)</i>	3.0 <i>(2.8)</i>	0.1 (0.1)
Sub-total	Indicated + Inferred	0.3 (1.0)	17.5 <i>(13.3)</i>	20.1 (20.0)	27.9 <i>(35.7</i>)	3.0 <i>(2.8)</i>	0.1 (0.1)
Area 4	Indicated	-	-	-	-	-	-
Area 4	Inferred	0.2 (0.6)	16.1 <i>(12.9)</i>	21.8 (21.7)	34.0 <i>(38.2)</i>	2.3 (2.5)	0.1 (0.1)
Sub-total	Indicated + Inferred	0.2 (0.6)	16.1 <i>(12.9)</i>	21.8 (21.7)	34.0 <i>(38.2)</i>	2.3 (2.5)	0.1 (0.1)
A	Indicated	-	-	-	-	-	-
Area 42	Inferred	0.7 (1.2)	20.7 (17.0)	15.6 <i>(13.6)</i>	35.6 (45.1)	3.3 (3.2)	0.1 (0.1)
Sub-total	Indicated + Inferred	0.7 (1.2)	20.7 (17.0)	15.6 <i>(13.6)</i>	35.6 (45.1)	3.3 (3.2)	0.1 (0.1)
	Indicated	-	-	-	-	-	-
TOTAL	Inferred	1.2 (3.0)	19.1 <i>(14.7)</i>	17.6 (17.4)	33.1 <i>(39.6)</i>	3.0 <i>(2.9)</i>	0.1 (0.1)
	Indicated + Inferred	1.2 (3.0)	19.1 <i>(14.7)</i>	17.6 (17.4)	33.1 (39.6)	3.0 <i>(2.9)</i>	0.1 (0.1)

Table 1 – Summary of Mineral Resource Estimate.

Notes:

• Mineral Resources reported at cut-offs of 15% Mn and 10% Mn (italics).

• Due to the effects of rounding, the total may not represent the sum of all components.

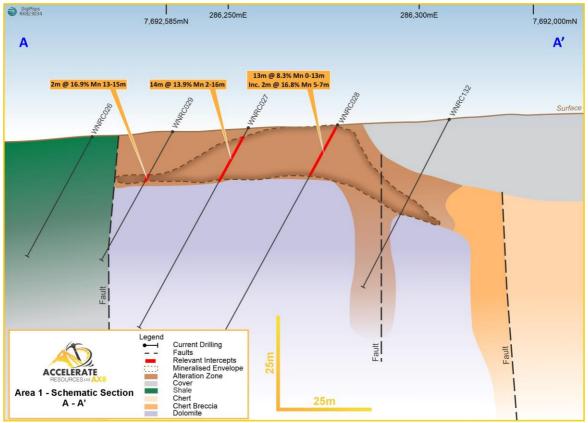


Figure 4 – Geological cross section of Barra North Area 1 showing significant intercepts.

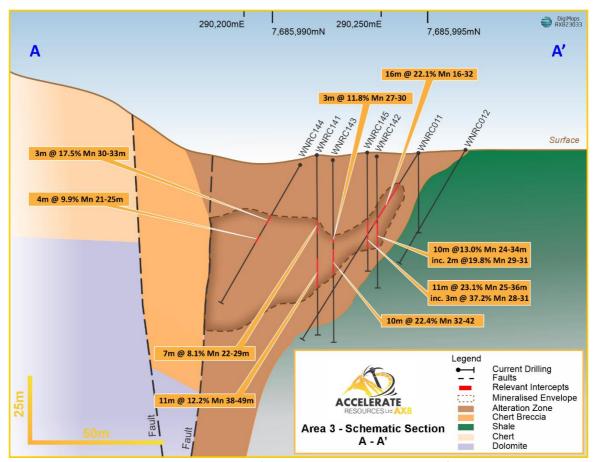


Figure 5 – Geological cross section of Barra South Area 3 showing significant intercepts.

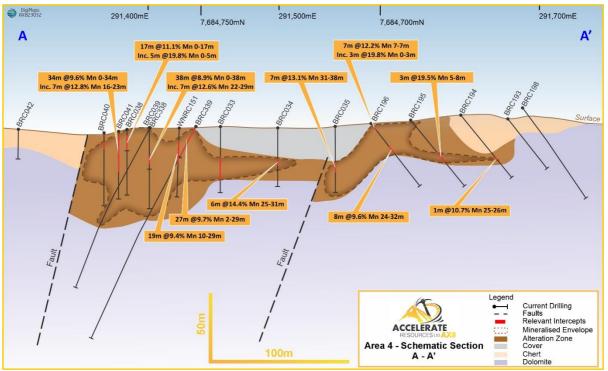


Figure 6 – Geological cross section of Barra South Area 4 showing significant intercepts.

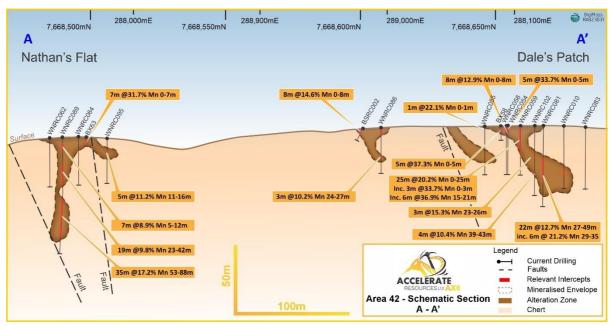


Figure 7 – Geological cross section of Area 42 showing significant intercepts.

Exploration Targets

Exploration Targets totalling **5.3** – **10.7Mt at 10** – **19% Mn** has been estimated for the target areas and prospects within the Woodie Woodie North Project. Estimates are summarised in Table 2 below.

The Exploration Target has been prepared in accordance with the 2012 edition of the JORC Code and is based on the current geological understanding of the geometry of the mineralised manganese occurrences. This understanding has been developed through detailed surface mapping and exploration drilling completed to date.

The potential quantity and grade of the Exploration Target is conceptual in nature and therefore is an approximation. There has been insufficient exploration to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource. It is an aspirational statement based on the company's view that continued exploration of the numerous untested manganese outcrops will continue to locate manganese mineralisation and with sufficient drilling add to the total resource.

The Exploration Target demonstrates potential for additional Mineral Resources with further resource definition drilling of extensions to the Mineral Resources at Areas 1, 3, 4, and 42. In addition, other prospect areas have defined exploration targets based on the integration of exploration information including geological surface mapping, historical drilling data, and the Company's recent Phase 1 to 4 RC drilling campaigns undertaken during 2022 and 2023 (Figure 2).

Area	Prospect	Tonnes (Mt range)	Mn grade (% range)
Barra North	Area 1	0.6 - 1.2	10 - 14
Barra South	Area 3	0.7 – 1.4	10 - 20
	Area 4	0.3 – 0.6	9 - 16
Sub-total		1.6 - 3.2	10 - 17
Area 42		0.5 – 0.9	11 – 22
Parsons Creek	Area 40	0.6 - 1.2	10 - 20
	Area 41	0.1 - 0.2	10 - 20
	Area 46	0.2 - 0.3	10 - 20
Sub-total		1.3 – 2.6	10-21
Gum Creek	Area 5	0.3 - 0.6	12 - 18
	Area 43	1.0 - 1.9	10 - 20
	Area 44	0.5 – 0.9	10 - 20
	Area 45	0.7 – 1.3	10 - 20
Sub-total		2.4 - 4.8	10 - 20
TOTAL		5.3 – 10.7	10 – 19

Table 2 – Summar	of Exploration	Taraet estimates
	, oj exploration	Turyet estimutes.

Basis of the Exploration Target Estimation

Preparation of the Exploration Target involved the integration of different datasets, including detailed surface mapping of manganese mineralisation, rock-chip sampling and RC drilling.

Mineralisation volumes were estimated using a combination of simple 3D wireframe models (based on drilling) as strike extensions to the MRE in Areas 1, 3, 4 and 42 where Mn mineralisation is not closed by drilling (i.e. remains open), and using mapped mineralised outcrop in areas with limited drilling. The wireframe models were generally extended approximately 50m along strike from the MRE. The mapped mineralised outcrop was used to calculate approximate surface areas, with the average thickness of mineralisation estimated from adjacent drill holes or outcrop heights. The minimum thickness was 5m and the maximum was 20m. There is insufficient data to estimate true widths of the mineralisation.

The upper and lower tonnage ranges were based on a nominal 100% and 50% of the mineralisation volumes respectively. A density of 3.5 t/m^3 was used to generate tonnages in all areas. Consideration was given to the pod-like nature of Mn mineralisation and limited strike and depth continuity.

Mineralised outcrop volumes: outcrop surface area (m^2) x depth (m) = Exploration Target volume (m^3) Exploration Target tonnage = Exploration Target volume (m^3) x Density (3.5 t/m³)

The grade range was guided by the RC drilling sample assay data for each target area and prospect. The assay data was filtered above a nominal 8.5% Mn cut-off. The upper and lower grade ranges are based on the assay sample statistics for each area reported, with the 25^{th} and 75^{th} percentiles of the data used respectively. For target areas with no RC drilling, the nominal global grade range of 10 - 20% Mn was assigned.

Future Work Program

A proposed Phase 5 RC drilling program is under consideration for 2024 comprising extensional resource definition drilling to grow the Mineral Resource inventory and follow-up on the recent discovery of large manganese outcrops in the Parsons Creek and Gum Creek corridors (Figure 2).

The Parsons Creek Corridor hosts many significant manganese outcrops spanning an area of approximately 5km x 2.5km and exhibit the size and mineralisation characteristics consistent with a potentially large mineralised system in the area. Proposed maiden exploration drilling is being considered at Areas 40, 41 and 46, where significant manganese outcrops have been identified.

The Gum Creek Corridor contains several large areas of manganese outcrop which have not been drill tested to date. The largest being Area 43 where the sub-horizontal dolomite/chert interface shows surface mineralisation over an area of 2km x 0.5km. Other significant outcrops occur as stacked layers within the Pinjian Chert Breccia in Areas 44 and 45 where mineralisation is exposed over vertical distances of 10-25m. Area 43 represents a high priority target for the proposed Phase 5 RC drilling program.

Proposed metallurgical testwork is also under consideration for possible future scoping to prefeasibility level technical studies for a beneficiation plant. Proposed activities comprise Sighter metallurgical testwork to determine the response of mineralisation to extraction methods, which will provide a basis for further detailed metallurgical testing. Initially the Sighter testwork will be performed on existing RC drilling samples from the Mineral Resources at Barra North, Barra South and Area 42 utilising heavy liquids analysis to determine a preliminary understanding of saleable products and expected yields. Based on results, this will be followed up with a possible diamond core drilling program for more definitive metallurgical testwork comprising crush size optimisation, plant equipment performance and pilot-plant dense media drum testwork.

-ENDS-

This announcement has been produced by the Company's published continuous disclosure policy and approved by the Board.

For further information, please contact:

Yaxi Zhan Managing Director

E: Yaxiz@AX8.com.au | P: +61 8 6248 9663 | W: www.AX8.com.au

Forward Looking Statements

Statements contained in this release, particularly those regarding possible or assumed future performance, costs, dividends, production levels or rates, prices, resources, reserves or potential

growth of Accelerate Resources Limited, are, or may be, forward looking statements. Such statements relate to future events and expectations and, as such, involve known and unknown risks and uncertainties. Actual results and developments may differ materially from those expressed or implied by these forward-looking statements depending on various factors.

Competent Person Statements

Information in this release related to Exploration Results is based on information compiled by Dr Joseph Drake-Brockman. He is a qualified geologist and a Fellow of the Australian Institute of Mining and Metallurgy (AusIMM). Dr Drake-Brockman has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources, and Ore Reserves'. Dr Drake-Brockman is employed by Drake-Brockman Geoinfo Pty Ltd and is under contract to Accelerate Resources Ltd. to act as Exploration Manager. Accelerate Resources Ltd. has granted Dr Drake-Brockman performance-based share options. Dr Drake-Brockman consents to the inclusion in this release of the matters based on his information in the form and context in which it appears.

The information in this report that relates to the Woodie Woodie North Mineral Resources is based on information compiled by Ms Felicity Hughes. Ms Hughes is an independent consultant at ERM Ltd. who was engaged by Accelerate Resources Ltd. and is a Member of the Australian Institute of Geoscientists (AIG) and the Australasian Institute of Mining and Metallurgy (AusIMM). Ms Hughes has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which they are undertaking to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code). Ms Hughes consents to the disclosure of the information in this report in the form and context in which it appears.

APPENDIX 1 - Understanding the Reporting of Material Mineral Resource Estimates (ASX LR 5.8)

Geology and Geological Interpretation

The regional geology of the Woodie Woodie North Mn Project consists of Archean Fortescue basement rocks (mafics and sediments), which are disconformably overlain by the Upper Archean Jerrinah Formation mudrocks and volcanic flows (with associated tuffs), which are in turn, conformably overlain by the Carawine Dolomite. Unconformably overlying the Carawine is the Proterozoic Pinjian Chert, which was formed during a phase of late diagenetic hydrothermal alteration associated with basin dewatering and early tectonic disruption. Chert breccia was formed by renewed movement along faults and hydrothermal dissolution of the dolomite causing the chert layers to collapse and form irregular masses of breccia. There is a variable amount of later re-silicification along joints and fractures and in breccia zones.

After chert formation the land surface was subject to weathering and erosion prior to the deposition of the Mesoproterozoic Manganese Group. The erosion and regolith at the base of the Group has resulted in a tan coloured clay-silica altered layer after dolomite with occasional remnant chert bands which has been generally included with the Pinjian Chert Breccia unit, but which is a separate event. This regolith has been modified and added to during subsequent exposure in the Palaeozoic and later. This has resulted in various amounts of yellowish partly silcreted regolith, patches of ferruginisation, clay weathering along chert-dolomite contacts, sand filled cavities and many areas of partly consolidated chert and clay scree derived from collapse and erosion of the Pinjian Chert.

Prior to the Mesoproterozoic, the Archean sequences were folded into a regional-scale NW plunging syncline by SW directed compression that also produced reverse faults along the margins of the syncline and along some lithological contacts. Subsequently, the Manganese Group basal sandstones were deposited unconformably in elongate tectonically controlled basins.

The area is dominated by NNW trending faults, most of which are likely to be reverse faults dipping 70-90° to the E. NE trending normal faults link the reverse faults producing horst and graben blocks. Later N-S trending dolerite dykes have intruded along open fractures that cut across the reverse faults. The NNW reverse fault slices contain Pinjian Chert & associated breccia that forms a variable capping on the underlying Carawine Dolomite. To the east slices of Jerrinah Fm & other Fortescue rocks have been pushed up against the dolomites.

The Archean and Proterozoic rocks are overlapped by younger Cainozoic sediments to the west.

Limited data (Blake T.S. et al., 2011) indicates that the manganese mineralization is of Mesoproterozoic age probably in broad association with the Manganese Group transgression. In general, the manganese at Woodie Woodie North occurs as hydrothermal massive to disseminated replacement mineralisation within altered dolomite, clay dominant dissolution zones and within chert breccia, and is analogous to the mineralisation styles at the Woodie Woodie mining camp. Structurally the manganese is associated with the footwall zones of NNW trending reverse faults, with NE orientated linking structures between but also with the younger N-S structures. This indicates the pervasive manganese event used all available pathways to penetrate the dolomite.

Drilling Techniques

All drilling carried out by Valiant Consolidated Limited (1996), Shaw River Manganese Limited (2008-2012 - BRC) and Consolidated Minerals Limited (2014 – BSRC) will be referred to as "Historical drilling" in this report. Four phases of RC drilling (Phase 1 to 4) were subsequently completed by Accelerate Resources during 2022-2023 will be termed "Recent drilling".

RC drilling in the Woodie Woodie North Project area has been carried out since 2008. Only RC methods were used to collect samples within the immediate area of the Project, except for the rotary air blast drill holes completed by Valiant Consolidated Limited (Hole ID BX – Area 42) in 1996. Table 1 below summarises the Historical and Recent drilling to date.

Area	Туре	Number of	Minimum	Maximum	Average	Total
Aled	Type	Holes	Depth (m)	Depth (m)	Depth (m)	Depth (m)
Area 1	Historical	21	5	97	48.4	1,016
Alea I	Recent	23	20	72	45.2	1,039
	Total	44	5	97	46.7	2,055
Area 2	Historical	87	24	250	89.8	7,816
Area 3	Recent	16	26	80	56.4	903
	Total	103	24	250	84.7	8,719
Area 4	Historical	100	6	196	88.8	8,876
Aled 4	Recent	13	30	61	47.3	615
	Total	113	6	196	84.0	9,491
Area 42	Historical	35	7	147	28.7	1,005
Area 42	Recent	103	27	105	55.2	5,682
	Total	138	7	147	48.5	6,687
Woodie	Grand	398	5	250	67.7	26.052
Woodie North	Total	550	5	250	07.7	26,952

Table 1 - Woodie Woodie North Resource Drill Hole Summary.

Sampling and Sub-Sampling Techniques

Historical Drilling

Historical drilling was completed by Shaw River Resources Limited, Valiant Consolidated Limited and Consolidates Minerals Limited.

For Shaw River Resources Limited: Samples were collected in 1 metre intervals and placed in plastic bags from the rig cyclone. A sub-sample (2-4kg) for assay was collected using a riffle splitter. The splitter was cleaned between samples using compressed air. Samples were kept dry whenever possible. Given that Mn is a bulk commodity, the sample weight and sub-sampling method is appropriate, and no special measures are needed to ensure representative samples. Drill cuttings range between 0.01-15mm in size are adequately sampled with a 1.5kg sample (P. Gy, 1956 in Field Geologists Manual – AusIMM). Commercial industry standard duplicate assays and standards were routinely used.

No sampling techniques information was found for Valiant Consolidated Limited or Consolidated Minerals Limited.

Recent Drilling

Four phases of RC drilling (Phase 1 to 4) were completed by Accelerate Resources during 2022-2023. For each metre drilled, drill cuttings were collected via a drill mounted closed system of duo tube,

cyclone and splitter box to minimize possible contamination and to maximize sample return. Two samples (main and duplicate) were calico bagged. The sampling cyclone and splitter were cleaned between each hole using compressed air. An overflow sample was collected for logging and chip tray reference. Average sample size varied from 2kg to 3kg. The samples taken are considered to accurately represent every metre intersected. The calico bagged samples were dry pulverized in a laboratory to ensure a homogenous sample. The sample was then pressed into a pellet for XRF analysis. Two company standards were inserted alternately into the run of field sample numbers at a frequency of 1 in every 20 samples. Duplicate samples were inserted using the same 1 in every 20 samples.

Mineral Resource Classification Criteria

The currently defined resources have been classified as **Inferred** based on the following criteria:

- Estimation of tonnage is based on a single global density value for each of the main geological and geochemical domains.
- Drill hole spacing is variable, ranging from 10m x 10m to 40m x 40m. Generally good continuity is demonstrated in areas of closely spaced drilling, however extension along strike has been implied by a single hole. Infill drilling will help to improve the grade continuity in these areas.
- Many historical drill holes are missing assay information due to an assumption of no mineralisation.

Sample Analysis Methodology

Historical Drilling

For Shaw River Resources Limited: Samples were sent to Ultra Trace Analytical Laboratories (Canning Vale, WA), where the samples were sorted, dried and split. The samples were pulverised in a vibrating disc pulveriser and then cast using a 12:22 flux to form a glass bead which was analysed for Al₂O₃, BaO, CaO, Fe₂O₃, K₂O, MgO, Mn, Na₂O, P, Pb, S, SiO₂ and TiO₂ using X-Ray Fluorescence Spectrometry.

No information was found for Valiant Consolidated Limited or Consolidated Minerals Limited sampling analysis methodology. Both companies used in-house mine site XRF laboratories for their assay work.

Recent Drilling

Samples were sent to Intertek Genalysis (Perth), where they were first dried to eliminate the moisture present in the sample and then pulverised into a homogeneous powder to ensure prepared samples were representative of their original, larger coarse samples. For most samples, at least 85% of the material was pulverised to 75 μ m or better. After sample preparation, the samples were analysed for Al₂O₃, BaO, CaO, Cr₂O₃, Cu, Fe₂O₃, K₂O, MgO, Mn, Na₂O, P₂O₅, Pb, SO₃, SiO₂, TiO₂ & V₂O₅ using a Li borate fusion/XRF spectrometry method specifically designed for Manganese Ore.

Estimation Methodology

Solids representing the broad Mn-Fe alteration zones and the higher-grade (>7% Mn) zones within them were used to constrain the grade interpolation by an Inverse Distance Squared technique. These domains were used as hard boundaries to constrain grade interpolation to within known reasonable limits.

Estimates of Mn, Fe, AI_2O_3 , SiO_2 , P_2O_5 , LOI, MgO, CaO, SiO_2 and TiO_2 were completed to gain an understanding of potential deleterious elements which might inhibit optimal concentrate production of Mn.

Cut-Off Grades and Reasonable Prospects for Eventual Economic Extraction

Clause 20 of the JORC Code (2012) requires that all reports of Mineral Resources must have reasonable prospects for eventual economic extraction (RPEEE), regardless of the classification of the Mineral Resource. The Competent Person believes there are reasonable prospects for eventual economic extraction of the Mineral Resources based on the following:

- Demonstrated continuity of siliceous chert alteration including high grade Mn zones.
- All prospects have further potential for extension of mineralisation both along and across strike of the modelled orebodies.
- Metallurgical testwork has indicated the possibility of successful upgrade of the Mn ore to concentrate grade.

Mining and Metallurgical Methods

Mining Methods

Mining has not commenced.

Historical Metallurgical Testwork

In 2010, Shaw River Manganese Limited commissioned specialist metallurgical laboratory Nagrom to conduct preliminary manganese beneficiation testwork on 12 composite samples from 8 RC drill holes (106 samples) representing manganese mineralisation in chert and dolomite from 5 prospects located in the Barra North and Barra South areas (Figure 1). The composites were homogenised and subsampled for assay and subsequent beneficiation test program (Table 2).

	Hole ID		-	Assayed H	ead Grade	9
ID	Drill Hole From-To	Prospect	Mn %	Fe %	SiO ₂ %	Al ₂ O ₃ %
BRC 112	BRC112_46-48	Area 4	17.3	12.4	50.0	0.7
BRC 135	BRC135_004-008	Nells	23.1	15.6	6.6	1.4
BRC 169	BRC169_34-42	Area 3	21.7	24.0	19.7	4.4
BRC 172	BRC172_002-004	Area 3	24.3	21.3	22.9	0.7
BRC 177	BRC177_002-004	Area 3	20.5	16.0	36.5	1.2
BRC 177	BRC177_008-009	Area 4	20.2	4.7	57.5	1.1
BRC 224	BRC224_43-48	Beebie	6.7	2.5	75.2	5.3
BRC 224	BRC224_48-51	Beebie	15.5	2.3	68.4	1.0
BRC 248	BRC248_62-73	Area 3	10.9	9.4	60.1	0.6
BRC 248	BRC248_57-62	Area 3	26.8	6.0	40.9	0.6
BRC 250	BRC250_0-14	Area 5	20.2	12.3	38.5	3.7
BRC 250	BRC250_10-13	Area 5	36.3	13.7	11.2	3.4

Table 2 - Sampled drillhole and assayed head grade from Barra North and Barra South.

The testwork programs explored conventional low-cost gravity processing techniques, including screening to remove natural fine clay minerals and Dense Media Separation (DMS) using cyclones, culminated in gravity separation of ultra-fines using a Wilfley Table. Results after screening at 0.5mm and DMS processing of the >0.5mm oversize fraction are presented in Table 3.

RC drill chips are generally used for preliminary metallurgical investigations to ascertain concentrate specification and prove processing concepts before more comprehensive testwork is conducted using diamond core or bulk sampling. As a result, screening processes revealed a relatively high mass reporting to screen undersize (average of 35% of the manganese) resulting in lower overall recoveries

than would be in reality. Such a high undersize proportion is not unexpected given RC drill chip samples are heavily pulverized in the drilling process.

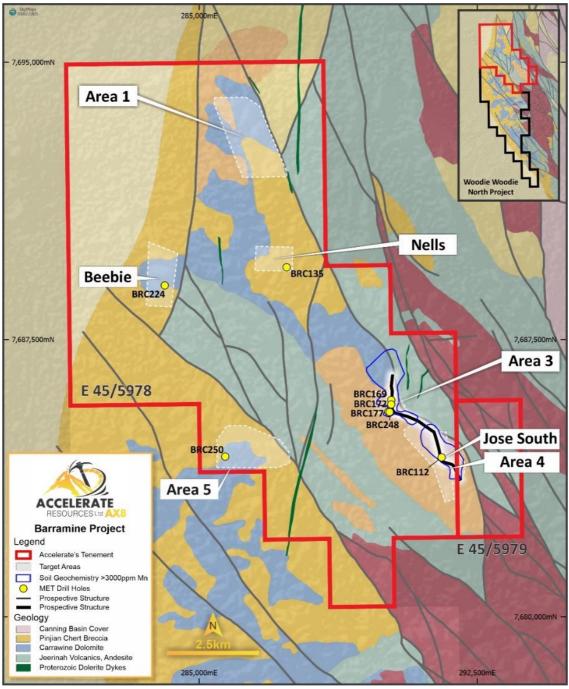


Figure 1 - Historical metallurgical sampling sites at Barra North and Barra South.

DMS performance on the screen oversize was extremely encouraging, producing concentrate grades ranging from 31.6-48.1% Mn, with some manganese recoveries as high as 92% (Table 3).

Sample Ture	Sample ID	Head Grade	Scre Under (<0.5r	size	DM Perforn (>0.5r	nance	Summa		n & Denso ration	e Media
Sample Type	(drill hole_from-to)	Graue	Distrib	ution	Recov	very	Over Recov		Conce Gra	
		Mn %	Mass %	Mn %	Mass %	Mn %	Mass %	Mn %	Mn %	Fe %
Interval	BRC112_46-48	17.6	38.5	33.0	41.7	69.0	25.7	46.3	31.6	19.5
Interval	BRC169_34-42	23.0	50.3	44.1	84.0	92.5	41.8	51.7	28.5	23.8
Interval	BRC224_43-48	7.4	44.5	32.5	9.1	40.9	5.0	27.6	40.7	2.7
Interval	BRC224_48-51	16.2	38.6	41.5	24.8	74.0	15.2	43.3	45.9	1.7
Interval	BRC248_57-62	26.5	29.5	28.3	48.4	86.4	34.1	61.9	48.1	4.5
Interval	BRC248_62-73	10.8	24.2	38.3	15.5	60.8	11.8	37.5	34.6	14.3
Interval	BRC250_10-13	37.6	52.2	45.7	81.6	91.6	39.0	49.8	48.0	10.4
Interval	BRC250_0-14	20.5	53.7	51.6	34.9	64.5	16.1	31.2	39.6	14.4
Composite	BRC135_004-008	23.8	42.8	18.3	17.1	23.7	9.8	19.4	47.2	8.8
Composite	BRC172_002-004	24.3	56.8	38.7	77.2	81.5	33.4	50.0	36.3	17.8
Composite	BRC177_002-004	19.5	41.6	33.8	46.0	81.9	26.9	54.2	39.3	16.3
Composite	BRC177_008-009	21.1	27.8	20.3	29.1	50.8	21.0	40.5	40.6	13.8

Table 3 - Summary of Screen and DMS Results from the 2010 testwork.

A strong positive correlation exists in the majority of DMS data between Mass Recovery and Mn Feed grade (Figure 2 and Figure 3) showing that manganese material with low %Fe will upgrade to ~40 %Mn. Even for low head grade feed of 7.4% Mn, the material can be upgraded to a 40.7% Mn concentrate (Table 3).

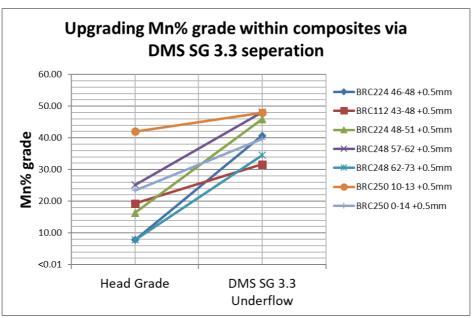


Figure 2 - Chart showing upgrade of manganese composite samples by DMS.

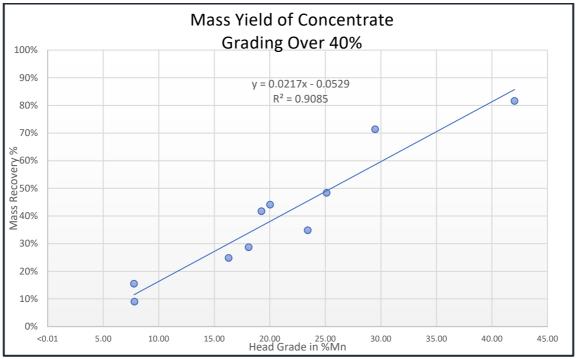


Figure 3 - Mass yield of concentrate grading over 40%.

DMS testwork demonstrated that a premium-grade product is achievable with low levels of impurities such as sulphur (average 0.005% S) and phosphorous (average 0.05% P).

Results for the Wilfley Table separation testwork carried out on 7 of the 12 samples are presented in the Table 4 below. Recoveries noted are expressed as incremental with respect to the feed sample. The preliminary Wilfley Table results confirm the liberated nature of the manganese minerals, producing concentrates as high as 50.7% Mn. The incremental recovery benefits of the treatment of ultrafine (<0.5mm) material will be investigated in future work programs to ascertain the true merits of the economical treatment and recovery.

		Head	Wilfley Ta	able Separ	ation (<0.5mm)		
Sample Type	Sample Id	Grade	Conce Distrib		Conce Gra	ntrate ade	
		% Mn	% Mass	% Mn	% Mn	% Fe	
Interval	BRC112_46-48	17.6	0.7	1.4	37.2	20.3	
Interval	BRC224_43-48	7.4	0.7	2.5	28.6	4.5	
Interval	BRC224_48-51	16.2	5.4	13.2	39.2	2.4	
Interval	BRC248_57-62	26.5	5.0	9.5	50.6	4.4	
Interval	BRC248_62-73	10.8	1.3	5.1	43.7	11.6	
Interval	BRC250_10-13	37.6	22.7	24.1	40.0	16.4	
Interval	BRC250_0-14	20.5	10.0	18.2	37.2	16.0	

Table 4 - Wilfley Table results from the 2010 testwork.

Recent Metallurgical Testwork

Accelerate engaged specialist metallurgical laboratory, Nagrom Laboratories (Perth), to conduct preliminary manganese test work on a 150kg composite bulk sample comprising multiple grab samples of outcropping manganese mineralisation over an area of ~4ha at Area 42. The testwork, completed in May 2022, explored conventional low-cost heavy media separation (HMS) techniques,

including dense media separation (DMS) using cyclones for fines and Ericsson Cone (EC) for lump and form the baseline for product optimisation in future metallurgical programs.

Results of the test work were very encouraging, demonstrating a Direct Ship Ore (DSO) Lump quality product with grades up to 40.9% Mn and 13.8% Fe. The calculated head assay confirms the high-grade nature of the manganese at surface producing a lump product grading 41.4% Mn and fine product grading 40.2% Mn (Table 5).

Results from the <32mm crushed product screening are presented in Table 5. Results for the Lump (EC) and Fine (DMS) processing after screening the crushed sample at 1mm are presented in Table 6.

	Tuble 5 - Crusileu Floudet Size Assay.						
	Distrib	ution			Grade		
Crushed Product < 32mm	Mass	Mn	Mn	Fe	SiO2	Al ₂ O ₃	Р
	%	%	%	%	%	%	%
Lump	81.7	82.7	41.4	13.6	8.6	1.9	0.044
Fine	13.6	13.5	40.2	14.1	10.2	2.0	0.051
< 1mm	4.7	3.8	33.5	16.2	15.0	2.9	0.061

Table 5 -	Crushed	Product	Size	Δςςαν
TUDIE J	CIUSIIEU	FIUUULL	JIZE I	HSSUY.

Table 6 - Summar	y Heavy Media Separatio	n.
rubic o buillinui		

Distribution			Grade				
Summary Balance	Mass	Mn	Mn	Fe	SiO2	Al ₂ O ₃	Р
	%	%	%	%	%	%	%
Ericsson Cone Lump Product	66.9	70.9	43.3	14.1	4.5	1.9	0.044
Dense Media Cyclone Fine Product	10.8	11.5	43.5	14.3	3.8	1.9	0.049
Waste	22.3	11.6	32.2	12.6	25.5	2.3	0.048
Calculated Head	100	100	40.9	13.8	9.1	2.0	0.045

Competent Person Statement

The information in this report that relates to the Woodie Woodie North Mineral Resources is based on information compiled by Ms Felicity Hughes. Ms Hughes is an independent consultant at ERM Ltd. who was engaged by Accelerate Resources Ltd. and is a Member of the Australian Institute of Geoscientists (AIG) and the Australasian Institute of Mining and Metallurgy (AusIMM). Ms Hughes has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which they are undertaking to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code). Ms Hughes consents to the disclosure of the information in this report in the form and context in which it appears.

APPENDIX 2 - JORC (2012) Table 1

Section 1 - Sampling Techniques and Data

Criteria in this section apply to all succeeding sections.

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialized industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure representative samples and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverized to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 For Accelerate Resources Drillholes: Reverse Circulation Drilling: for each metre drilled, drill cuttings were collected via a drill mounted cyclone and sample splitter. Two samples (main and duplicate) were calico bagged. An overflow sample was collected for logging and chip tray reference. Average sample size varied from 2 kg to 3kg. The samples taken are considered to accurately represent every metre intersected. The calico bagged samples are dry pulverized in a laboratory to ensure a homogonous sample. The sample is then pressed into a pellet for XRF analysis. Samples were analysed by Intertek for Al₂O₃, BaO, CaO, Cr₂O₃, Cu, Fe₂O₃, K₂O, MgO, Mn, Na₂O, P₂O₅, Pb, SO₃, SiO₂, TiO₂ & V₂O₅. For Historic Baramine Drillholes: A large amount of sampling was undertaken (ca 18,500 samples). Commercial laboratories Ultratrace (now Bureau Veritas) and SGS did the multi-element analyses and reported the results. Drilling: for each 1 m, drill cuttings were collected, and a 2-3 kg split was sent for XRF assay. Samples were dried, crushed and pulverized. Al₂O₃, BaO, CaO, Fe₂O₃, K₂O, MgO, Mn, Na₂O, P₂O₅, PbO, SiO₂, SO₃ & TiO₂ were determined. For Accelerate Resources Drillholes: Reverse circulation drilling. Drilling is advanced using a face sampling air hammer bit. Sample return via duo-tube. Sample collection via cyclone and splitter box. For Historic Baramine Drillholes: Reverse circulation drilling was used. Drilling is advanced using a face sampling air hammer bit. Sample return via duo-tube. Sample collection via
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximize sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 cyclone. For Accelerate Resources Drillholes: Sample recovery is visually estimated from the overflow chip piles laid out in a regular grid on the ground. Samples are collected via closed system of duo tube, cyclone and splitter box to minimize possible contamination and to maximize sample return. The sampling cyclone and splitter was cleaned between each hole by compressed air. Manganese being a bulk commodity with assays in the 5-50% range it is unlikely that any sample grainsize bias exists. For Historic Baramine Drillholes: Samples are collected, per metre, in plastic bags from the rig cyclone.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a	For Accelerate Resources Drillholes:

	level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Photography. The total length and percentage of the relevant intersections logged.	 Samples are geologically logged on site. Basic colour, mineralisation, mineralogy and lithology recorded for each geological interval. A ~25 g reference sample of each metre drilled is kept in a chip tray and photographed. All data are recorded in a digital database register. Logging is visual estimation and qualitative. Details of mineralisation intersected are described in the text. For Historic Baramine Drillholes: Samples are geologically logged on site. Basic colour, mineralization, mineralogy and lithology recorded for each 1m interval. A ~25 g reference sample was kept in a chip tray. This reference material was lost during the insolvency of Shaw River Manganese Ltd (March 2014).
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximize representative nature of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 For Accelerate Resources Drillholes: Samples are collected dry via a cyclonic rig mounted splitter. This is industry standard. The entire calico bagged drill samples are crushed, homogenized and a subset pulverized in a laboratory. Sample size is considered appropriate for a bulk commodity and in terms of the mineralisation type and product type. For Historic Baramine Drillholes: A sub-sample (2-4 kg) for assay was collected using a riffle splitter. The splitter is cleaned between samples using compressed air. Samples are kept dry whenever possible. Given that Mn is a bulk commodity the sample weight and sub-sampling method is appropriate, and no special measures are needed to ensure representative samples. Drill cuttings range 0.01-15 mm in size are adequately sampled with a 1.5 kg sample (P. Gy, 1956 in Field Geologists Manual – AusIMM).
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 For Accelerate Resources Drillholes: The assaying method and laboratory procedures are considered appropriate for the reporting of manganese drill results. Given the sample was whole crushed and pulverized the XRF assay method is considered a total average method as all the exposed material is included in the assay determination. Two company standards inserted alternatively into the run of field sample numbers at 1 every 20 samples. Duplicate samples are analysed at 1 in every 20 samples. For Historic Baramine Drillholes: For drilling, rock chip and geochemical samples commercial Industry standard duplicate assays and standards were routinely used. There is no evidence that the samples were not professionally handled and analysed.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes.	 For Accelerate Resources Drillholes: Significant intersections are verified by inspection of the reference samples in chip trays. Portable XRF instruments are used to verify visual identification of manganese. Data was recorded directly into an Excel

	Documentation of primary data, data entry	template. It is then uploaded into a corporate
	procedures, data verification, data storage	database. No assay data has been re-set or adjusted.
	(physical and electronic) protocols.	For Historic Baramine Drillholes:
	Discuss any adjustment to assay data.	 Significant intersections are verified by inspection of the reference samples in chip trays. Data is initially recorded on paper and then transferred to Excel templates. It is then uploaded into a corporate database. No assay data has been re-set or adjusted. However, these procedures cannot be specifically confirmed for this report as the project was abandoned by Shaw River Manganese Ltd in March 2014.
-	Accuracy and quality of surveys used to locate	For Accelerate Resources Drillholes:
points	drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 For holes WNRC001-118 the drill hole locations and RL elevations have been determined by kinematic DGPS to a sub 10 cm accuracy. For holes WNRC119-163 the drill hole locations were recorded by handheld GPS units. Accuracy is of the order of 3 m. Co-ordinates are in MGA94-Z51.
		 Topographic control is provided by LIDAR DTM 50 cm spaced contour lines.
		 For holes less than 50m depths, compass and inclinometer collar readings were taken for hole orientation.
		 For holes greater than 50m depths holes were surveyed using a Reflex EZ-TRAC digital downhole survey instrument.
		• For Historic Baramine Drillholes:
		 Both the surface sampling and the drill hole location: were recorded by handheld GPS units. Accuracy is of the order of 5 m. Co-ordinates are in MGA94-Z50. Drill hole RLs were estimated from topographic contours to an accuracy of about 2-5 m. From BRC001-120 only compass and inclinometer collar readings were taken for hole orientation. From BRC121 onwards, holes greater than 50 m planned depth were surveyed downhole for declination and azimuth with a gyroscope method. Holes from BRC258 onwards were surveyed using a Camteq Multi-shot probe.
	dData spacing for reporting of Exploration	For Accelerate Resources Drillholes:
listribution	Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation	 Drilling was detailed in scope and concentrated on Mn targets. Nominal spacings varied between 20 to 60m. Results at this stage are sufficient for initial resource estimates.
	procedure(s) and classifications applied.	 No sample compositing has been done.
	Whether sample compositing has been applied.	For Historic Baramine Drillholes:
		• Detailed prospects: Areas 1, 3-5 were drilled on a nominal 40 m spacings, though this is varied due to access and success in hitting mineralization. This is adequate to establish the geological framework and the mineralization envelope. Elsewhere, spacings are usually 40 m but widening to 80-120 m in the search for mineralization. These are typical spacings for sco drilling.
Orientation of	Whether the orientation of compling achieves	No sample compositing was done.
Drientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	 For Accelerate Resources and Historic Baramine Drillholes: Mineralisation occurs in irregularly shaped disseminations and replacement bodies in the form

	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	bulk lodes within altered breccia zones. Therefore, it is considered unlikely that the mineralisation will be bound to a specific orientation and that no sampling bias exists.
Sample security	The measures taken to ensure sample security.	 For Accelerate Resources Drillholes: Company personnel collected the calico sample bags. The samples are then packed into bulka-bags for dispatch. The samples are delivered to the nearest freight centre by company staff. They are then delivered to the contracted laboratory using commercial transport operators. The lab holds the samples in secure premises until sample preparation is done. Samples received are checked against samples dispatched for any irregularities. Sample security is not seen as a significant risk. For Historic Baramine Drillholes: It is assumed that industry standard procedures were in place to collected, collate and dispatch samples. These cannot be verified due to the insolvency of Shaw River Manganese Ltd (March 2014).
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Sample security is not seen as a significant risk. For Accelerate Resources and Historic Baramine Drillholes: The projects are at an exploration and initial resource drilling stage; so, no reviews have been carried out.

Section 2 - Reporting of Exploration Results

Criteria listed in	the proceeding	contion also	applyta	this soction
Cillena iisteu iii	i the preceding	section also	αρριγιο	uns section.

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.	 The WWN tenements E45/5978 and E45/5979 are held by ATTSTAR Pty Ltd. Attstar is a 100% subsidiary of Accelerate Resources Limited. The tenement E45/5854 is held by Pardoo Resources Pty Ltd. Accelerate Resources owns the 100% Mn and Fe rights. Accelerate have an absolute caveat over E45/5854. The tenements are located within crown land and are partially subject to pastoral leases. All tenements are in good standing. Exploration of the tenements is subject to granting of access and permits under the following acts: Mining Act 1978 (WA) Petroleum and Geothermal Energy Resources Act 1967 (WA) Aboriginal Heritage Act 1972 (WA) Aboriginal Affairs Planning Authority Act 1972 (WA) Aboriginal and Torres Strait Islander Heritage Protection Act 1984 (Commonwealth).
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Valiant Consolidated Ltd/Consolidated Minerals Ltd 1993 – 1998, carried out photointerpretation, heliborne anomaly ground checks, rock chip sampling, track establishment and shallow rotary air blast drilling over significant parts of the tenement block. Significant manganese outcrops were identified, and the drilling

		 located shallow moderate to high grade manganese mineralisation. Subsequently, Jupiter Mines Limited (2009-2011) carried out a Heliborne EM survey and some limited mapping and rock chip sampling over parts of the current EL's. Later Pilbara Manganese Limited (2011-2013) carried out limited mapping, gravity and DDIP surveys over a discrete target area (Area 42). They also drilled 5 RC holes, two of which reported manganese mineralisation. Shaw River Manganese Ltd (Baramine Area - 2008-2014) carried out surface sampling, several geophysical studies (IP, EM, Gravity, among others), metallurgical testwork, mineralogical analysis, preliminary geological modelling & preliminary resource evaluation work. Specifically on the drilling activities, Shaw River Manganese Ltd drilled 343 RC drillholes for 27,478m, with approx. 11,329 samples analysed. These activities were concentrated around Area 1, Area 3 and Area 4, which were the main mineralized areas.
Geology	Deposit type, geological setting and style of mineralisation.	 Hydrothermal massive and/or disseminated Mn replacement mineralisation within altered dolomite and chert. Dolomite host rock is Carawine Dolomite from the Hamersley Group, part of the Mount Bruce Supergroup.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes easting and northing of the drill hole collar, elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar, dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	 Tabulated drill hole details are listed in the body of the report.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 Reported Mn intercepts are calculated using a minimum of a 3m interval over a minimum average grade of 8.5%. A maximum of 2m dilution @ <8.5% is allowed. This method emphasises the width of the intersection at the expense of grade but does indicate the likely mining situation. One- to six-metre intercepts of higher-grade material within the lower grade intervals are used to illustrate the potential for high grade mineralisation within the mineralised system.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect	 Drilling has been orientated perpendicular to the nominal mineralised structures. All drill hole intersections have been reported as down hole. There is insufficient data to estimate true widths.

	(e.g. 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	• See figures and tables in the report.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results.	 All current and historic data has been presented and reported without bias.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Significant historical work and data collection have been done by other parties. Current work by Accelerate has been includes reviews of this data, rock chip sampling and ongoing drill programs. The current report is on mineral resource estimation using historical drilling done by Shaw River Manganese Ltd and recent drilling done by Accelerate Resources Ltd.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	This report indicates the nature of planned further work.

Section 3 – Estimation and Reporting of Mineral Resources

Criteria	JORC Code explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used.	 A Microsoft Access database is maintained by CSA Global. All Drillhole data required for Mineral Resource estimation is uploaded and held within this database. Extracts are taken as required. Data validation checks prior to use include checks for invalid or missing data, from-to interval overlaps, incorrect downhole maximum depths, and obvious spurious survey data (visually appraised).
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case.	 No site visit was made as the entire resource has been classified as Inferred.
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation.	 The manganese mineralisation was modelled within the alteration zone as defined by Mn and Fe Where possible, high grade sample populations of Mn within the alteration zone were modelled. Distribution of the drillholes was also used to constrain interpolation for all deposits.

Criteria	JORC Code explanation	Commentary
	The factors affecting continuity both of grade and geology.	
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 The interpreted mineral resource as defined by the drilling is located within 4 satellite deposits located within a 30 km zone of manganese outcrops and staining. The main zone containing Areas 3 and 4 has a strike length of approximately 3km 1km width. Area 1 is located approximately 7.5km to the north and has dimensions of 500m x 200m. Area 42 lies approximately 15km SSE of Areas 3 and 4 and has several small areas with defined resources, the largest being 600m x 120m. Mineralisation appears to form a semi-continuous subhorizontal blanket near surface, with depths ranging from 2-10m. Narrow sub-vertical zones of mineralisation have also been identified in proximity to faults.
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drillhole data, and use of reconciliation data if available.	 The MRE for the Woodie Woodie North deposit wa completed using an Inverse Distance squared technique using Supervisor and GEMS software. The broad distribution pattern of the drillholes did no have sufficient data points for meaningful variography so search ellipses each area were based on th assumption of sub-horizontal and sub-vertica mineralised horizons, with a global variogram the determine the range of search distances where available Estimates of Mn, Fe, Al₂O₃, SiO₂, P₂O₅, LOI, MgO, CaO SiO₂ and TiO₂ were completed to gain an understanding of potential deleterious elements which might inhibit optimal concentrate production of Mn. Assays were composited to one metre intervals prior the interpolation, and coded with the respective domains for Area, Fault zone, geology and alteration. Due to the thin nature of the modelled solids, a KN/ (Kriging Neighbourhood analysis) confirmed that the available data showed a relative insensitivity to change in block size. A block size of Sm x 5m x 1m representing a quarter of the average drillhole spacing was used for the block models. Data points were confined to relative domains, and net top cuts were used. Models were visually validated and swath plot generated to validate the models.

Criteria	JORC Code explanation	Commentary
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	• The tonnages are estimated on a dry basis.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	• A cut-off grade of 10.5% Mn has been used to report resources, based on sample population statistics and grade-tonnage curves.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	 No assumptions have been made regarding possible mining methods.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Historical preliminary manganese beneficiation testwork on 12 composite samples from 8 RC drill holes (106 samples) representing manganese mineralisation in chert and dolomite was completed by Shaw River Manganese Ltd in 2010. The testwork programs explored conventional low-cost gravity processing techniques, including screening to remove natural fine clay minerals and Dense Media Separation (DMS) using cyclones, culminating in gravity separation of ultra-fines using a Wilfley Table. Significant results included: DMS performance on the screen oversize was encouraging with concentrate grades ranging from 31.6-
		 48.1% Mn, with some recoveries as high as 92% Mn. DMS results showed a strong positive correlation between Mass Recovery and Mn Feed grade indicating that manganese material with low %Fe will upgrade to ~40% Mn. Results showed that low head grade feed of 7.4% Mn could be upgraded to a 40.7% Mn concentrate. DMS testwork demonstrated that a premium-grade product is achievable with low levels of impurities such
		 as sulphur (average 0.005% S) and phosphorous (average 0.05% P). Preliminary Wilfley Table results confirm the liberated nature of the manganese minerals, producing concentrates from ultra-fines as high as 50.7% Mn.
		In 2022, Accelerate Resources Ltd completed preliminary beneficiation testwork on a 150kg composite bulk sample comprising multiple grab samples of outcropping manganese mineralisation over an area of ~4ha at Area 42 was completed by. Testwork comprised conventional low-cost heavy media separation (HMS) techniques, including dense media separation (DMS) using cyclones for fines and Ericsson Cone (EC) for lump ore. Results were encouraging and included:
		• A Direct Ship Ore (DSO) Lump quality product with grades up to 40.9% Mn and 13.8% Fe can be produced.

Criteria	JORC Code explanation	Commentary
		 Successful production of a lump product grading 41.4% Mn and fine product grading 40.2% Mn from <32mm crushed product.
		 Results of the heavy media separation (HMS) processing after screening the crushed sample at 1mm yielded 43.3% Mn lump product from the Ericsson Cone and 43.5% Mn fine product from the dense media cyclone.
Environmental factors or	Assumptions made regarding possible waste and process residue disposal options.	 No assumptions regarding possible waste and process residue disposal options have been made.
assumptions	It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	 Given the early stage of studies, it is reasonable to assume that waste will be disposed of in accordance with approved standard open-pit mining practices in Western Australia.
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc.), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	 An average bulk density value was assigned to each of the five individual domains modelled – Dolomite, Chert, Shale, Alteration zone and Mineralised zone using data from historical metallurgical testwork (see table 2, appendix 1) and available literature. Dolomite: 2.95 g/cm³ (mean value from literature). Chert: 2.9 g/cm³ (met test samples with <10% Mn and Fe and >50% SiO²). Shale: 2.7 g/cm³ (median value from literature with dolomite presence). Alteration Zone: 3 g/cm³ (met test samples with Mn+Fe between 10 and 30%). Mineralised Zone: 3.5 g/cm³ (mean value from met test samples with Mn ranging from 15 and 42%). Further density determinations are recommended.
Classification	The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit.	 The Woodie Woodie North Manganese resources are classified as Inferred. The four main areas have been drilled from 40 x 40m down to 10m x 10m. However, many of the historical holes have missing assay data, and are drilled in many directions. Often the mineralised zone has been inferred from as few as one drillhole. There were Insufficient data points for geostatistical evaluation; the method used for grade interpolation was Inverse Distance. Modelling of the deposit demonstrates continuity of the mineralisation long strike within the geographical domains but is variable across strike and at depth. Further drilling is required to define the true extent and orientation of the Mn mineralisation. The classification level is considered appropriate for the current stage of this Project.

Criteria	JORC Code explanation	Commentary
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	 The MRE has been internally peer reviewed by CSA Global; no external audits or reviews have been completed at this stage.
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	 The relative accuracy of the MRE is reflected in the reporting of the Mineral Resource to Inferred classification, as per the guidelines of the JORC Code (2012). The statement refers to global estimation of tonnes and grade. No production data is available, but inferences have been made with the nearby Woodie Woodie manganese mine.
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	
	These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	

Hole	Easting	Northing	RL	Azi	Decl	Tdepth	Project	Company
BRC001	286037	7693721	216.63	0	-90	78	Area 1	Shaw River Mn
BRC002	286029	7693758	212.45	0	-90	72	Area 1	Shaw River Mn
BRC003	285608	7693692	211.81	0	-90	54	Area 1	Shaw River Mn
BRC004	286155	7693250	204.19	0	-90	48	Area 1	Shaw River Mn
BRC005	286251	7693402	206.92	0	-90	66	Area 1	Shaw River Mn
BRC006	286201	7692752	209.61	0	-90	78	Area 1	Shaw River Mn
BRC007	286221	7692662	208.24	0	-90	24	Area 1	Shaw River Mn
BRC008	286237	7692635	210.8	0	-90	24	Area 1	Shaw River Mn
BRC009	286226	7692627	210.02	0	-90	24	Area 1	Shaw River Mn
BRC010	286301	7692502	210.46	0	-90	24	Area 1	Shaw River Mn
BRC011	286371	7692346	211.96	0	-90	24	Area 1	Shaw River Mn
BRC012	286304	7692735	220.69	0	-90	24	Area 1	Shaw River Mn
BRC013	286851	7691902	228.93	0	-90	72	Area 1	Shaw River Mn
BRC014	286765	7692945	216.24	0	-90	54	Area 1	Shaw River Mn
BRC018	290326	7685602	243.16	0	-90	48	Area 3	Shaw River Mn
BRC019	290276	7685600	246.29	0	-90	54	Area 3	Shaw River Mn
BRC020	290251	7685502	256.33	0	-90	60	Area 3	Shaw River Mn
BRC021	290271	7685772	239.46	0	-90	54	Area 3	Shaw River Mn
BRC022	290161	7685842	247.18	0	-90	42	Area 3	Shaw River Mn
BRC023	290126	7685840	247.36	0	-90	42	Area 3	Shaw River Mn
BRC024	290081	7685842	253.71	0	-90	36	Area 3	Shaw River Mn
BRC025	290101	7685802	256.7	0	-90	30	Area 3	Shaw River Mn
BRC026	289986	7685772	258.35	0	-90	36	Area 3	Shaw River Mn
BRC027	290919	7684986	257.28	0	-90	72	Area 4	Shaw River Mn
BRC028	291151	7684802	241.63	0	-90	78	Area 4	Shaw River Mn
BRC029	291451	7684652	246.81	0	-90	42	Area 4	Shaw River Mn
BRC030	291491	7684692	247.31	0	-90	48	Area 4	Shaw River Mn
BRC031	291451	7684692	249.71	0	-90	36	Area 4	Shaw River Mn
BRC032	291411	7684692	254.82	0	-90	42	Area 4	Shaw River Mn
BRC033	291451	7684732	250.23	0	-90	54	Area 4	Shaw River Mn
BRC034	291501	7684732	249.33	0	-90	48	Area 4	Shaw River Mn
BRC035	291551	7684732	250.48	0	-90	54	Area 4	Shaw River Mn
BRC036	291501	7684782	248.71	0	-90	72	Area 4	Shaw River Mn
BRC037	291381	7684742	251.94	0	-90	48	Area 4	Shaw River Mn
BRC038	291381	7684762	248.45	0	-90	54	Area 4	Shaw River Mn
BRC039	291401	7684762	249.55	0	-90	66	Area 4	Shaw River Mn
BRC040	291361	7684762	246.76	0	-90	60	Area 4	Shaw River Mn
BRC041	291381	7684782	246.38	0	-90	54	Area 4	Shaw River Mn
BRC042	291301	7684802	248.98	0	-90	24	Area 4	Shaw River Mn
BRC043	291451	7684782	248.75	0	-90	54	Area 4	Shaw River Mn
BRC044	291631	7684612	267.17	0	-90	24	Area 4	Shaw River Mn
BRC045	291611	7684562	254.56	0	-90	24	Area 4	Shaw River Mn
BRC046	291761	7684542	260.48	0	-90	36	Area 4	Shaw River Mn
BRC047	291761	7684475	252.47	0	-90	18	Area 4	Shaw River Mn
BRC048	291721	7684502	257.67	0	-90	6	Area 4	Shaw River Mn

Ground Floor, U1/16 Ord Street, West Perth, WA, 6005 28

P +61 (0) 8 6248 9663

Hole	Easting	Northing	RL	Azi	Decl	Tdepth	Project	Company
BRC049	291933	7683997	249.62	0	-90	54	Area 4	Shaw River Mn
BRC050	291963	7683972	247.52	0	-90	50	Area 4	Shaw River Mn
BRC051	291974	7684039	255.41	0	-90	54	Area 4	Shaw River Mn
BRC052	292016	7684001	262.84	0	-90	66	Area 4	Shaw River Mn
BRC053	291966	7684011	255.24	0	-90	48	Area 4	Shaw River Mn
BRC054	291932	7683880	240.41	0	-90	30	Area 4	Shaw River Mn
BRC062	285906	7693742	203.03	0	-90	35	Area 1	Shaw River Mn
BRC063	285989	7693616	208.87	0	-90	97	Area 1	Shaw River Mn
BRC064	286401	7692627	211.77	0	-90	70	Area 1	Shaw River Mn
BRC065	286451	7692627	204	0	-90	29	Area 1	Shaw River Mn
BRC066	286276	7692627	210.64	0	-90	5	Area 1	Shaw River Mn
BRC067	286451	7692627	204	0	-90	66	Area 1	Shaw River Mn
BRC068	286826	7692502	202.3	0	-90	48	Area 1	Shaw River Mn
BRC103	291976	7683927	246.5	0	-90	74	Area 4	Shaw River Mn
BRC104	291951	7683897	241.6	0	-90	73	Area 4	Shaw River Mn
BRC105	291933	7683880	240.4	0	-90	79	Area 4	Shaw River Mn
BRC106	291601	7684202	241.3	0	-90	133	Area 4	Shaw River Mn
BRC107	291601	7684152	241.1	0	-90	133	Area 4	Shaw River Mn
BRC108	291601	7684092	241.1	0	-90	94	Area 4	Shaw River Mn
BRC109	291601	7684047	241.1	0	-90	61	Area 4	Shaw River Mn
BRC110	291651	7683502	240.8	0	-90	121	Area 4	Shaw River Mn
BRC111	291551	7683852	246.7	0	-90	67	Area 4	Shaw River Mn
BRC112	291601	7684252	244	0	-90	97	Area 4	Shaw River Mn
BRC113	291501	7684202	244	0	-90	139	Area 4	Shaw River Mn
BRC114	291501	7684152	244	0	-90	85	Area 4	Shaw River Mn
BRC115	291801	7684102	239.5	0	-90	74	Area 4	Shaw River Mn
BRC116	291801	7684152	239.5	0	-90	109	Area 4	Shaw River Mn
BRC117	291701	7684127	240	0	-90	98	Area 4	Shaw River Mn
BRC118	291651	7684732	248.1	0	-90	49	Area 4	Shaw River Mn
BRC119	291551	7684782	250.4	0	-90	73	Area 4	Shaw River Mn
BRC120	291501	7684822	247.5	0	-90	97	Area 4	Shaw River Mn
BRC166	290041	7685842	250.27	227	-50	24	Area 3	Shaw River Mn
BRC167	290236	7685762	237.46	92	-50	90	Area 3	Shaw River Mn
BRC168	290281	7685762	237.53	92	-50	60	Area 3	Shaw River Mn
BRC169	290241	7685802	235.05	92	-50	66	Area 3	Shaw River Mn
BRC170	290241	7685882	247.09	92	-50	60	Area 3	Shaw River Mn
BRC171	290241	7685722	239.24	92	-50	90	Area 3	Shaw River Mn
BRC172	290241	7685682	241.13	92	-52	66	Area 3	Shaw River Mn
BRC173	290281	7685722	237.59	92	-70	84	Area 3	Shaw River Mn
BRC174	290281	7685682	233.21	92	-70	78	Area 3	Shaw River Mn
BRC175	290281	7685642	239.02	92	-60	90	Area 3	Shaw River Mn
BRC176	290326	7685597	243.54	92	-60	90	Area 3	Shaw River Mn
BRC177	290161	7685487	249.94	0	-90	78	Area 3	Shaw River Mn
BRC178	290046	7685379	269.35	0	-90	84	Area 3	Shaw River Mn
BRC179	290144	7685447	249.29	0	-90	48	Area 3	Shaw River Mn
BRC180	289961	7685722	252.36	2	-50	70	Area 3	Shaw River Mn
BRC181	290001	7685762	258.23	2	-50	36	Area 3	Shaw River Mn
BRC182	290041	7685802	262.92	2	-60	54	Area 3	Shaw River Mn

Ground Floor, U1/16 Ord Street, West Perth, WA, 6005 P+61 (0) 8 6248 9663

AX8.com.au

-50 -51 -50 -50 -50 -50 -50 -50 -50 -50 -50 -51 -52 -51 -52 -51 -52 -51 -52 -50 </th <th>Tdepth 66 90 66 90 78 78 78 78 90 66 90 72 78 78 90 66 72 66 66 66 66 66</th> <th>Project Area 3 Area 3 Area 3 Area 3 Area 3 Area 3 Area 3 Area 3 Area 3 Area 4 Area 4 Area 4 Area 4 Area 4 Area 4 Area 4</th> <th>Shaw River MnShaw River Mn</th>	Tdepth 66 90 66 90 78 78 78 78 90 66 90 72 78 78 90 66 72 66 66 66 66 66	Project Area 3 Area 3 Area 3 Area 3 Area 3 Area 3 Area 3 Area 3 Area 3 Area 4 Area 4 Area 4 Area 4 Area 4 Area 4 Area 4	Shaw River MnShaw River Mn
-50 2 -50 2 -50 2 -52 2 -51 2 -52 0 -90 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50	90 66 90 72 78 78 78 90 66 72 66 66 66 66 66 66 66 66 66	Area 3 Area 3 Area 3 Area 3 Area 3 Area 3 Area 3 Area 3 Area 4 Area 4 Area 4 Area 4 Area 4 Area 4	Shaw River Mn Shaw River Mn
-50 2 -50 2 -50 2 -52 2 -51 2 -52 0 -90 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50	66 90 72 78 78 90 66 72 66 66 66 66 66 66 66 66 66 66	Area 3 Area 3 Area 3 Area 3 Area 3 Area 3 Area 4 Area 4 Area 4 Area 4 Area 4 Area 4	Shaw River Mn Shaw River Mn
2 -50 2 -52 2 -51 2 -52 2 -52 0 -90 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50	90 72 78 78 90 66 72 66 66 66 66	Area 3 Area 3 Area 3 Area 3 Area 4 Area 4 Area 4 Area 4 Area 4 Area 4	Shaw River Mn Shaw River Mn
2 -50 2 -52 2 -51 2 -52 2 -52 0 -90 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50	90 72 78 78 90 66 72 66 66 66 66	Area 3 Area 3 Area 3 Area 3 Area 4 Area 4 Area 4 Area 4 Area 4 Area 4	Shaw River Mn Shaw River Mn
2 -52 2 -51 2 -52 0 -90 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50	78 78 78 90 66 72 66 66 66	Area 3 Area 3 Area 3 Area 4 Area 4 Area 4 Area 4 Area 4 Area 4	Shaw River Mn Shaw River Mn Shaw River Mn Shaw River Mn Shaw River Mn Shaw River Mn Shaw River Mn
2 -51 /2 -52) -90 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50	78 78 78 90 66 72 66 66 66	Area 3 Area 3 Area 4 Area 4 Area 4 Area 4 Area 4 Area 4	Shaw River Mn Shaw River Mn Shaw River Mn Shaw River Mn Shaw River Mn Shaw River Mn
72 -52 0 -90 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50	78 78 90 66 72 66 66 66	Area 3 Area 4 Area 4 Area 4 Area 4 Area 4	Shaw River Mn Shaw River Mn Shaw River Mn Shaw River Mn Shaw River Mn
-90 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50	90 66 72 66 66	Area 4 Area 4 Area 4 Area 4 Area 4	Shaw River Mn Shaw River Mn Shaw River Mn Shaw River Mn
2 -50 2 -50 2 -50 2 -50 2 -50 2 -50 2 -50	90 66 72 66 66	Area 4 Area 4 Area 4 Area 4	Shaw River Mn Shaw River Mn Shaw River Mn
2 -50 2 -50 2 -50 2 -50 2 -50 2 -50	66 72 66 66	Area 4 Area 4 Area 4	Shaw River Mn Shaw River Mn
2 -50 2 -50 2 -50 2 -50	72 66 66	Area 4 Area 4	Shaw River Mn
2 -50 2 -50 2 -50	66 66	Area 4	
2 -50 2 -50	66		Shaw River Mn
2 -50			
	96	Area 4	Shaw River Mn
	66	Area 4	Shaw River Mn
2 -56	72	Area 4	Shaw River Mn
2 -51	66	Area 4	Shaw River Mn
			Shaw River Mn
	-		Shaw River Mn
			Shaw River Mn
) -90			Shaw River Mn
			Shaw River Mn
) -90			Shaw River Mn
	-50 -51 -51 -50 -50 -51 -50 -51 2 -50 9 -50 2 -51 2 -55 2 -50 2 -90 2 -90	-50 66 -51 72 -51 90 -50 66 -50 66 -50 78 -51 78 -50 78 -50 78 -50 78 -51 78 -50 78 -51 78 -51 78 -51 78 -51 78 -51 78 -51 78 -51 78 -51 78 -55 60 2 -55 60 -90 2 -55 60 -90 2 -60 -90 78 -90 78 -90 78 -90 78 -90 78 -90 78 -90 78 -90 78 <tr< td=""><td>-50 66 Area 4 -51 72 Area 4 -51 90 Area 4 -51 90 Area 4 -50 66 Area 4 -50 66 Area 4 -50 78 Area 4 -51 66 Area 4 -51 66 Area 4 -50 78 Area 4 -50 78 Area 4 -50 78 Area 4 -51 78 Area 4 2 -50 78 Area 4 2 -50 78 Area 4 2 -50 66 Area 4 2 -55 60 Area 3 2 -55 60 Area 3 -90 78 Area 3</td></tr<>	-50 66 Area 4 -51 72 Area 4 -51 90 Area 4 -51 90 Area 4 -50 66 Area 4 -50 66 Area 4 -50 78 Area 4 -51 66 Area 4 -51 66 Area 4 -50 78 Area 4 -50 78 Area 4 -50 78 Area 4 -51 78 Area 4 2 -50 78 Area 4 2 -50 78 Area 4 2 -50 66 Area 4 2 -55 60 Area 3 2 -55 60 Area 3 -90 78 Area 3

Hole	Easting	Northing	RL	Azi	Decl	Tdepth	Project	Company
BRC263	291721	7684151	241.3	2	-60	142	Area 4	Shaw River Mn
BRC264	291719	7684114	239.1	2	-60	142	Area 4	Shaw River Mn
BRC265	291681	7684163	239.5	2	-60	142	Area 4	Shaw River Mn
BRC266	291676	7684125	239.5	2	-60	154	Area 4	Shaw River Mn
BRC267	291646	7684276	246	2	-60	82	Area 4	Shaw River Mn
BRC268	291642	7684240	243	2	-60	82	Area 4	Shaw River Mn
BRC269	291645	7684207	242	2	-60	112	Area 4	Shaw River Mn
BRC270	291640	7684167	239	2	-60	143	Area 4	Shaw River Mn
BRC271	291601	7684201	241.5	2	-60	100	Area 4	Shaw River Mn
BRC272	291602	7684157	240.5	2	-60	118	Area 4	Shaw River Mn
BRC273	291562	7684278	245	2	-60	70	Area 4	Shaw River Mn
BRC274	291565	7684237	243.5	2	-60	82	Area 4	Shaw River Mn
BRC275	291560	7684207	241.5	2	-60	154	Area 4	Shaw River Mn
BRC277	291560	7684164	242	2	-60	160	Area 4	Shaw River Mn
BRC278	291520	7684198	243.5	2	-60	160	Area 4	Shaw River Mn
BRC279	291519	7684162	242.5	2	-60	178	Area 4	Shaw River Mn
BRC280	291479	7684283	242	2	-60	110	Area 4	Shaw River Mn
BRC281	291478	7684239	241	2	-60	130	Area 4	Shaw River Mn
BRC282	291482	7684208	242	2	-60	142	Area 4	Shaw River Mn
BRC283	291479	7684160	245	2	-60	148	Area 4	Shaw River Mn
BRC284	290319	7685885	230.4	272	-60	184	Area 3	Shaw River Mn
BRC285	290279	7685881	234.6	272	-60	172	Area 3	Shaw River Mn
BRC286	290232	7685842	241.1	272	-60	118	Area 3	Shaw River Mn
BRC287	290252	7685879	242.2	272	-60	136	Area 3	Shaw River Mn
BRC288	290284	7685843	230	272	-60	148	Area 3	Shaw River Mn
BRC289	290323	7685845	231.3	272	-60	178	Area 3	Shaw River Mn
BRC290	290285	7685805	236.8	272	-60	160	Area 3	Shaw River Mn
BRC291	290319	7685810	231.8	272	-60	166	Area 3	Shaw River Mn
BRC292	290282	7685765	237.4	272	-60	100	Area 3	Shaw River Mn
BRC293	290321	7685763	232.1	272	-60	118	Area 3	Shaw River Mn
BRC294	290323	7685727	232	272	-60	106	Area 3	Shaw River Mn
BRC295	290360	7685721	230	272	-60	112	Area 3	Shaw River Mn
BRC296	290252	7685681	236	272	-60	82	Area 3	Shaw River Mn
BRC297	290289	7685680	233	272	-60	100	Area 3	Shaw River Mn
BRC298	290333	7685678	231	272	-60	118	Area 3	Shaw River Mn
BRC299	290288	7685642	239	272	-60	76	Area 3	Shaw River Mn
BRC300	290334	7685641	235	272	-60	94	Area 3	Shaw River Mn
BRC301	290201	7685602	263	272	-60	136	Area 3	Shaw River Mn
BRC302	290280	7685603	240	272	-60	70	Area 3	Shaw River Mn
BRC303	290283	7685600	241	92	-60	112	Area 3	Shaw River Mn
BRC304	290273	7685601	247	105	-80	76	Area 3	Shaw River Mn
BRC305	290357	7685551	234	272	-60	94	Area 3	Shaw River Mn
BRC306	290248	7685565	255.5	272	-60	94	Area 3	Shaw River Mn
BRC307	290201	7685522	268.5	272	-60	76	Area 3	Shaw River Mn
BRC308	290241	7685519	252	272	-60	100	Area 3	Shaw River Mn
BRC309	290201	7685480	253	272	-60	82	Area 3	Shaw River Mn
BRC310	290201	7685440	255	272	-60	82	Area 3	Shaw River Mn
BRC311	290210	7685402	262	272	-60	58	Area 3	Shaw River Mn

P +61 (0) 8 6248 9663 AX8.com.au

Hole	Easting	Northing	RL	Azi	Decl	Tdepth	Project	Company
BRC312	290244	7685401	262	272	-60	76	Area 3	Shaw River Mn
BRC313	290272	7685362	262	272	-60	118	Area 3	Shaw River Mn
BRC314	290243	7685485	256	272	-60	94	Area 3	Shaw River Mn
BRC315	290317	7685523	249	272	-60	88	Area 3	Shaw River Mn
BRC316	290282	7685441	246	272	-60	148	Area 3	Shaw River Mn
BRC317	290362	7685601	238	272	-60	166	Area 3	Shaw River Mn
BRC318	290290	7685685	233	92	-60	94	Area 3	Shaw River Mn
BRC319	290283	7685717	238	92	-60	88	Area 3	Shaw River Mn
BRC320	290244	7685845	239.1	92	-60	130	Area 3	Shaw River Mn
BRC321	290145	7685850	247	92	-60	220	Area 3	Shaw River Mn
BRC332	291961	7683935	248	2	-90	160	Area 4	Shaw River Mn
BRC333	291997	7684004	258	272	-60	190	Area 4	Shaw River Mn
BRC334	291582	7684134	242	2	-90	178	Area 4	Shaw River Mn
BRC335	291079	7685077	238	2	-90	163	Area 4	Shaw River Mn
BRC337	290361	7685842	240	123	-60	250	Area 3	Shaw River Mn
BRC338	291401	7684762	246	317	-60	148	Area 4	Shaw River Mn
BRC339	291431	7684734	248	317	-60	196	Area 4	Shaw River Mn
BRC340	291458	7684824	245	317	-60	148	Area 4	Shaw River Mn
BRC341	291488	7684798	247	317	-60	148	Area 4	Shaw River Mn
BSRC001	289109.2	7668762	255.47	270	-60	135	Area 42	Consolidated Minerals
BSRC002	288979.5	7668611	255.55	270	-60	147	Area 42	Consolidated Minerals
BSRC003	289319.7	7668682	235.08	270	-60	87	Area 42	Consolidated Minerals
BSRC004	288777	7668416	234.81	270	-60	123	Area 42	Consolidated Minerals
BSRC005	288830.1	7668179	230.31	270	-60	87	Area 42	Consolidated Minerals
BX51	289732.9	7668327	228	0	-90	22	Area 42	Valiant Consolidated
BX52	289726.4	7668328	230	0	-90	15	Area 42	Valiant Consolidated
BX53	289753.9	7668315	224	0	-90	12	Area 42	Valiant Consolidated
BX54	289751.3	7668333	223	0	-90	11	Area 42	Valiant Consolidated
BX55	289068.2	7668684	254.5	0	-90	9	Area 42	Valiant Consolidated
BX56	289079.9	7668672	256.15	0	-90	12	Area 42	Valiant Consolidated
BX57	289089.7	7668663	256.2	0	-90	15	Area 42	Valiant Consolidated
BX58	289095	7668645	256.35	0	-90	12	Area 42	Valiant Consolidated
BX59	289150.8	7668609	257.9	0	-90	9	Area 42	Valiant Consolidated
BX60	289146.4	7668590	258.2	0	-90	12	Area 42	Valiant Consolidated
BX61	288801.5	7668463	242	0	-90	21	Area 42	Valiant Consolidated
BX62	288790	7668483	244	0	-90	13	Area 42	Valiant Consolidated
BX63	288769.2	7668491	246.25	0	-90	7	Area 42	Valiant Consolidated
BX64	288760.8	7668494	246.5	0	-90	18	Area 42	Valiant Consolidated
BX65	288804.9	7668495	242	0	-90	9	Area 42	Valiant Consolidated
BX66	289095.9	7668619	256.1	0	-90	21	Area 42	Valiant Consolidated
BX67	289134.1	7668632	256.8	0	-90	21	Area 42	Valiant Consolidated
BX68	289156.2	7668645	257.7	0	-90	12	Area 42	Valiant Consolidated
BX69	289165.9	7668608	254.75	0	-90	12	Area 42	Valiant Consolidated
BX70	289058.7	7668672	256	0	-90	12	Area 42	Valiant Consolidated
BX71	289069.1	7668664	256.1	0	-90	18	Area 42	Valiant Consolidated
BX72	289074.6	7668525	253	0	-90	12	Area 42	Valiant Consolidated
								Valiant Consolidated
BX73	289021.6	7668498	253	0	-90	9	Area 42	

Hole	Easting	Northing	RL	Azi	Decl	Tdepth	Project	Company
BX74	288841.3	7668326	232	0	-90	21	Area 42	Valiant Consolidated
BX75	288712.5	7668237	234.5	0	-90	15	Area 42	Valiant Consolidated
BX76	288636.2	7668160	234	0	-90	15	Area 42	Valiant Consolidated
BX77	288706.7	7668230	225	0	-90	18	Area 42	Valiant Consolidated
BX78	288580.8	7668125	220	0	-90	15	Area 42	Valiant Consolidated
BX79	288504	7668127	214.1	0	-90	15	Area 42	Valiant Consolidated
BX80	288562.8	7668127	220.1	0	-90	13	Area 42	Valiant Consolidated
WNRC001	291393	7684252	243.49	0	-90	51	Area 4	AX8 [Phase 1]
WNRC002	291332.5	7684293	246.1	0	-90	39	Area 4	AX8 [Phase 1]
WNRC003	291388.5	7684320	245.62	0	-90	60	Area 4	AX8 [Phase 1]
WNRC004	291233.2	7684368	247.91	0	-90	39	Area 4	AX8 [Phase 1]
WNRC005	291290.9	7684414	241.62	0	-90	54	Area 4	AX8 [Phase 1]
WNRC006	291527.1	7684848	243.55	0	-90	61	Area 4	AX8 [Phase 1]
WNRC008	291440.5	7684584	245.49	0	-90	40	Area 4	AX8 [Phase 1]
WNRC009	291401.7	7684542	242.1	0	-90	54	Area 4	AX8 [Phase 1]
WNRC010	291351	7684517	240.33	0	-90	48	Area 4	AX8 [Phase 1]
WNRC011	290265	7685987	231.96	263	-58	80	Area 3	AX8 [Phase 1]
WNRC012	290282	7685982	231.23	294	-56	48	Area 3	AX8 [Phase 1]
WNRC013	290318.5	7686031	233.74	0	-90	57	Area 3	AX8 [Phase 1]
WNRC014	290279.1	7685954	230.63	281	-58	39	Area 3	AX8 [Phase 1]
WNRC015	289299.1	7669191	196.22	252	-58	94	Area 42	AX8 [Phase 1]
WNRC016	289341.3	7669203	196.24	240	-60	36	Area 42	AX8 [Phase 1]
WNRC017	289249.1	7669226	196.21	287	-58	87	Area 42	AX8 [Phase 1]
WNRC018	289319	7669197	196.16	257	-60	105	Area 42	AX8 [Phase 1]
WNRC019	289747.4	7668667	200.79	234	-58	102	Area 42	AX8 [Phase 1]
WNRC020	289748.7	7668467	206.87	0	-90	60	Area 42	AX8 [Phase 1]
WNRC021	289768.3	7668685	201.51	225	-60	96	Area 42	AX8 [Phase 1]
WNRC022	286035.9	7693061	196.57	230	-90	63	Area 1	AX8 [Phase 1]
WNRC023	286048.3	7693071	197.09	238	-59	39	Area 1	AX8 [Phase 1]
WNRC024	286065.2	7693080	197.8	253	-59	48	Area 1	AX8 [Phase 1]
WNRC025	286076.1	7693087	197.87	252	-59	58	Area 1	AX8 [Phase 1]
WNRC026	286215	7692583	204.35	252	-60	36	Area 1	AX8 [Phase 1]
WNRC027	286255.4	7692590	205.51	270	-60	60	Area 1	AX8 [Phase 1]
WNRC028	286279.4	7692591	205.57	263	-60	72	Area 1	AX8 [Phase 1]
WNRC029	286235.6	7692589	205.3	256	-60	39	Area 1	AX8 [Phase 1]
WNRC030	286268.5	7692571	205.28	268	-60	59	Area 1	AX8 [Phase 1]
WNRC031	286286.1	7692536	207.16	260	-60	39	Area 1	AX8 [Phase 1]
WNRC032	286290.1	7692507	207.53	260	-60	48	Area 1	AX8 [Phase 1]
WNRC033	288586.9	7668126	220.13	0	-90	40	Area 42	AX8 [Phase 2]
WNRC034	288532	7668128	216.91	0	-90	54	Area 42	AX8 [Phase 2]
WNRC035	288532.9	7668127	216.92	150	-60	42	Area 42	AX8 [Phase 2]
WNRC036	288510.8	7668126	214.83	247	-60	66	Area 42	AX8 [Phase 2]
WNRC037	288644.4	7668157	225.31	280	-60	60	Area 42	AX8 [Phase 2]
WNRC038	288707	7668233	234.04	187	-60	36	Area 42	AX8 [Phase 2]
WNRC039	289159.5	7668602	257.79	0	-90	60	Area 42	AX8 [Phase 2]
WNRC040	289150	7668590	258.19	0	-90	42	Area 42	AX8 [Phase 2]
WNRC041	289129.9	7668589	257.89	0	-90	36	Area 42	AX8 [Phase 2]
WNRC042	289110.6	7668588	256.79	0	-90	36	Area 42	AX8 [Phase 2]

AX8.com.au

Hole	Easting	Northing	RL	Azi	Decl	Tdepth	Project	Company
WNRC043	289123.2	7668603	257.06	0	-90	42	Area 42	AX8 [Phase 2]
WNRC044	289148.1	7668611	257.83	0	-90	42	Area 42	AX8 [Phase 2]
WNRC045	289169.1	7668615	257.16	0	-90	30	Area 42	AX8 [Phase 2]
WNRC046	289155.4	7668630	256.87	0	-90	42	Area 42	AX8 [Phase 2]
WNRC047	289133.4	7668637	256.89	0	-90	54	Area 42	AX8 [Phase 2]
WNRC048	289137.5	7668612	257.33	152	-60	36	Area 42	AX8 [Phase 2]
WNRC049	289129.8	7668627	256.86	0	-90	36	Area 42	AX8 [Phase 2]
WNRC050	289125.8	7668624	256.64	0	-90	36	Area 42	AX8 [Phase 2]
WNRC051	289091.2	7668625	256.51	0	-90	48	Area 42	AX8 [Phase 2]
WNRC051 WNRC052	289074.3	7668625	256.32	0	-90	48	Area 42 Area 42	AX8 [Phase 2]
WNRC052	289074.3	7668646	256.63	0	-90	42	Area 42	AX8 [Phase 2]
WNRC053	289120.2	7668646	256.97	0	-90	42	Area 42 Area 42	AX8 [Phase 2]
WNRC054	289101.8	7668646	256.39	0	-90	42	Area 42 Area 42	AX8 [Phase 2]
WNRC055	289079.3	7668659	256.34	0	-90	42	Area 42 Area 42	AX8 [Phase 2]
	289071.8	7668676		0	-90	36	Area 42	AX8 [Phase 2]
WNRC057			256.57	0		42		AX8 [Phase 2]
WNRC058	289092.3	7668663	256.97		-90		Area 42	AX8 [Phase 2]
WNRC059	289105.1	7668665	256.97	0	-90	42	Area 42	AX8 [Phase 2]
WNRC060	288743.6	7668513	247.77	0	-90	96	Area 42	AX8 [Phase 2]
WNRC061	288729.1	7668503	246.49	0	-90	42	Area 42	AX8 [Phase 2]
WNRC062	288739.7	7668478	245.63	0	-90	42	Area 42	AX8 [Phase 2]
WNRC063	288754.9	7668521	248.27	0	-90	48	Area 42	AX8 [Phase 2]
WNRC064	288759.8	7668495	246.86	0	-90	42	Area 42	AX8 [Phase 2]
WNRC065	288746.9	7668454	244.34	0	-90	42	Area 42	AX8 [Phase 2]
WNRC066	288768.7	7668470	245.9	0	-90	54	Area 42	AX8 [Phase 2]
WNRC067	288774.7	7668483	245.71	0	-90	84	Area 42	AX8 [Phase 2]
WNRC068	288784.5	7668478	244.65	0	-90	42	Area 42	AX8 [Phase 2]
WNRC069	288793.2	7668466	242.47	0	-90	42	Area 42	AX8 [Phase 2]
WNRC070	288794.6	7668483	242.91	0	-90	42	Area 42	AX8 [Phase 2]
WNRC071	288793.1	7668497	244.25	0	-90	42	Area 42	AX8 [Phase 2]
WNRC072	288747.6	7668537	249.16	260	-60	72	Area 42	AX8 [Phase 2]
WNRC073	288734.5	7668536	248.84	260	-59	54	Area 42	
WNRC074	288745.2	7668524	248.3	250	-60	78	Area 42	AX8 [Phase 2]
WNRC075	289066.8	7668928	241.14	75	-60	102	Area 42	AX8 [Phase 2] AX8 [Phase 2]
WNRC076	289161.1	7668989	221.82	230	-60	102	Area 42	AX8 [Phase 2]
WNRC077	289163.4	7668994	221.69	280	-59	102	Area 42	
WNRC078	289025.3	7668953	243.86	100	-60	102	Area 42	AX8 [Phase 2] AX8 [Phase 3]
WNRC079	289218.3	7669221	197.46	220	-60	90	Area 42	
WNRC080	289103	7668679	256.96	0	-90	40	Area 42	AX8 [Phase 3]
WNRC081	289120.4	7668680	256.83	220	-89	70	Area 42	AX8 [Phase 3]
WNRC082	289136.9	7668657	256.44	160	-88	66	Area 42	AX8 [Phase 3]
WNRC083	289160.6	7668680	255.29	0	-90	54	Area 42	AX8 [Phase 3]
WNRC084	288966.2	7668643	256.91	0	-90	40	Area 42	AX8 [Phase 3]
WNRC085	288960.9	7668622	255.51	0	-90	40	Area 42	AX8 [Phase 3]
WNRC086	288999.2	7668604	254.95	0	-90	40	Area 42	AX8 [Phase 3]
WNRC087	289023	7668591	252.96	0	-90	43	Area 42	AX8 [Phase 3]
WNRC088	289043.2	7668581	251.93	0	-90	54	Area 42	AX8 [Phase 3]
WNRC089	288744.4	7668495	246.81	200	-89	102	Area 42	AX8 [Phase 3]
WNRC090	288744.1	7668428	241.22	0	-90	54	Area 42	AX8 [Phase 3]

WNRC091 288744.8 7668474 245.48 0 -90 30 Area 42 AX8 [Phase 3] WNRC092 289392 7668671 227.93 330 -89 54 Area 42 AX8 [Phase 3] WNRC094 289362.3 7668670 233.4 0 -90 50 Area 42 AX8 [Phase 3] WNRC095 288778.7 7668513 246.25 0 -90 40 Area 42 AX8 [Phase 3] WNRC096 288768.3 7668700 255.72 0 -90 48 Area 42 AX8 [Phase 3] WNRC097 289098.6 7668700 255.72 0 -90 54 Area 42 AX8 [Phase 3] WNRC100 289140.8 7668701 255.86 130 -89 96 Area 42 AX8 [Phase 3] WNRC101 28919.8 7668680 256.57 160 -89 69 Area 42 AX8 [Phase 3] WNRC102 28919.8 7668680 256.57 0 -90 36	Hole	Easting	Northing	RL	Azi	Decl	Tdepth	Project	Company
WNRC032 289373.2 7668671 227.93 330 -89 54 Area 42 AX8 [Phase 3] WNRC094 289373.2 7668662 231.78 0 -90 67 Area 42 AX8 [Phase 3] WNRC095 288778.7 7668513 246.25 0 -90 40 Area 42 AX8 [Phase 3] WNRC096 288768.3 7668700 255.72 0 -90 48 Area 42 AX8 [Phase 3] WNRC098 289098.6 7668700 255.72 0 -90 54 Area 42 AX8 [Phase 3] WNRC098 289098.6 7668700 255.66 0 -90 66 Area 42 AX8 [Phase 3] WNRC100 289120.9 7668670 256.57 160 -89 60 Area 42 AX8 [Phase 3] WNRC101 289120.9 7668660 256.57 160 -89 60 Area 42 AX8 [Phase 3] WNRC102 289120.9 7668670 221.7 60 -89 <								-	
WNRC03 289373.2 7668682 231.78 0 -90 67 Area 42 AX8 [Phase 3] WNRC094 289362.3 7668513 246.25 0 -90 40 Area 42 AX8 [Phase 3] WNRC095 288778.7 7668513 246.25 0 -90 40 Area 42 AX8 [Phase 3] WNRC097 289079.9 7668700 255.72 0 -90 54 Area 42 AX8 [Phase 3] WNRC098 289098.6 7668700 255.71 0 -90 66 Area 42 AX8 [Phase 3] WNRC100 289121 7668700 255.65 0 -90 54 Area 42 AX8 [Phase 3] WNRC101 289139.8 7668600 256.57 160 -89 60 Area 42 AX8 [Phase 3] WNRC102 28912.9 7668671 226.22 0 -90 33 Area 42 AX8 [Phase 3] WNRC102 28935 7668673 230.05 0 -90 36									
WNRC094 289362.3 7668667 233.4 0 -90 50 Area 42 AX8 [Phase 3] WNRC095 288778.7 7668513 246.25 0 -90 40 Area 42 AX8 [Phase 3] WNRC096 288978.3 76685700 255.72 0 -90 54 Area 42 AX8 [Phase 3] WNRC098 289098.6 7668700 255.71 0 -90 66 Area 42 AX8 [Phase 3] WNRC099 289121 7668700 256.69 0 -90 66 Area 42 AX8 [Phase 3] WNRC100 289140.8 766860 256.57 160 -89 60 Area 42 AX8 [Phase 3] WNRC102 289170.9 766860 256.57 160 -89 69 Area 42 AX8 [Phase 3] WNRC102 289395 766860 227.45 0 -90 33 Area 42 AX8 [Phase 3] WNRC105 289347 7668573 230.50 0 -90 36									
WNRC095 288778.7 7668513 246.25 0 -90 40 Area 42 AX8 [Phase 3] WNRC096 288768.3 7668700 255.72 0 -90 48 Area 42 AX8 [Phase 3] WNRC097 289098.6 7668700 255.72 0 -90 54 Area 42 AX8 [Phase 3] WNRC099 289121 7668700 255.69 0 -90 66 Area 42 AX8 [Phase 3] WNRC100 289140.8 7668701 255.86 130 -89 96 Area 42 AX8 [Phase 3] WNRC101 289139.8 7668680 256.57 160 -89 60 Area 42 AX8 [Phase 3] WNRC102 28910.9 7668671 226.22 0 -90 36 Area 42 AX8 [Phase 3] WNRC104 289374 7668703 230.05 0 -90 36 Area 42 AX8 [Phase 3] WNRC105 289374 7668652 231.46 72 -87 54 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
WNRC066 288768.3 7668533 248.82 0 -90 48 Area 42 AX8 [Phase 3] WNRC097 289079.9 7668700 255.72 0 -90 54 Area 42 AX8 [Phase 3] WNRC098 289098.6 7668700 255.71 0 -90 65 Area 42 AX8 [Phase 3] WNRC099 289121 7668700 255.86 130 -90 66 Area 42 AX8 [Phase 3] WNRC100 289140.8 7668660 256.57 160 -89 60 Area 42 AX8 [Phase 3] WNRC101 289120.9 7668670 226.22 0 -90 33 Area 42 AX8 [Phase 3] WNRC105 289395 7668670 227.45 0 -90 36 Area 42 AX8 [Phase 3] WNRC106 289347 7668703 230.05 0 -90 27 Area 42 AX8 [Phase 3] WNRC106 289348.6 7668654 232.86 0 -90 48 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
WNRC097 289079.9 7668700 255.72 0 -90 54 Area 42 AX8 [Phase 3] WNRC098 289098.6 7668700 257.13 0 -90 65 Area 42 AX8 [Phase 3] WNRC099 289121 7668700 256.69 0 -90 66 Area 42 AX8 [Phase 3] WNRC100 289120.9 7668680 256.57 160 -89 60 Area 42 AX8 [Phase 3] WNRC101 289120.9 7668660 256.57 160 -89 69 Area 42 AX8 [Phase 3] WNRC102 289120.9 7668671 226.22 0 -90 33 Area 42 AX8 [Phase 3] WNRC105 289374 7668703 230.05 0 -90 27 Area 42 AX8 [Phase 3] WNRC108 289348.6 7668654 232.86 0 -90 48 Area 42 AX8 [Phase 3] WNRC108 289348.6 7669173 195.7 227 -60 84									
WNRC098 289098.6 7668700 257.13 0 -90 65 Area 42 AX8 [Phase 3] WNRC099 289121 7668700 256.69 0 -90 66 Area 42 AX8 [Phase 3] WNRC100 289139.8 7668800 255.59 0 -90 54 Area 42 AX8 [Phase 3] WNRC102 289120.9 7668600 256.57 160 -89 60 Area 42 AX8 [Phase 3] WNRC102 289120.9 7668671 226.22 0 -90 33 Area 42 AX8 [Phase 3] WNRC104 28949.9 7668671 226.22 0 -90 36 Area 42 AX8 [Phase 3] WNRC105 289374 7668703 230.05 0 -90 27 Area 42 AX8 [Phase 3] WNRC107 289369.8 7668652 231.46 72 -87 54 Area 42 AX8 [Phase 3] WNRC108 289348.6 7668574 232.86 0 -90 48 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
WNRC099 289121 7668700 256.69 0 -90 66 Area 42 AX8 [Phase 3] WNRC100 289140.8 7668701 255.86 130 -89 96 Area 42 AX8 [Phase 3] WNRC101 289139.8 7668680 256.57 160 -89 60 Area 42 AX8 [Phase 3] WNRC102 289120.9 7668660 256.57 160 -89 60 Area 42 AX8 [Phase 3] WNRC103 288761.3 7668437 241.7 60 -89 69 Area 42 AX8 [Phase 3] WNRC104 289409.9 7668671 226.22 0 -90 33 Area 42 AX8 [Phase 3] WNRC105 289357 7668650 227.45 0 -90 34 Area 42 AX8 [Phase 3] WNRC106 289374 7668703 230.05 0 -90 48 Area 42 AX8 [Phase 3] WNRC108 289348.6 7668554 232.86 0 -90 48<									
WNRC100 289140.8 7668701 255.86 130 -89 96 Area 42 AX8 [Phase 3] WNRC101 289139.8 7668680 256.59 0 -90 54 Area 42 AX8 [Phase 3] WNRC102 289120.9 7668660 256.57 160 -89 60 Area 42 AX8 [Phase 3] WNRC103 288761.3 7668671 226.22 0 -90 33 Area 42 AX8 [Phase 3] WNRC104 289395 76686703 230.05 0 -90 36 Area 42 AX8 [Phase 3] WNRC108 289348.6 7668652 231.46 72 -87 54 Area 42 AX8 [Phase 3] WNRC108 289348.6 7668654 232.86 0 -90 48 Area 42 AX8 [Phase 3] WNRC109 289271.6 7669173 195.7 227 -60 84 Area 42 AX8 [Phase 3] WNRC110 28935.9 7669070 196.62 230 -60 <					-				
WNRC101 289139.8 7668680 256.59 0 -90 54 Area 42 AX8 [Phase 3] WNRC102 289120.9 7668660 256.57 160 -89 60 Area 42 AX8 [Phase 3] WNRC103 288761.3 7668437 241.7 60 -89 69 Area 42 AX8 [Phase 3] WNRC104 289409.9 7668671 226.22 0 -90 33 Area 42 AX8 [Phase 3] WNRC105 289374 7668703 230.05 0 -90 36 Area 42 AX8 [Phase 3] WNRC108 289348.6 7668654 232.86 0 -90 48 Area 42 AX8 [Phase 3] WNRC109 289271.6 7669173 195.7 227 -60 84 Area 42 AX8 [Phase 3] WNRC110 28935 7669109 196.33 245 -58 84 Area 42 AX8 [Phase 3] WNRC111 28935.1 7669246 195.46 250 -60 84					-				
WNRC102 289120.9 7668660 256.57 160 -89 60 Area 42 AX8 [Phase 3] WNRC103 288761.3 7668437 241.7 60 -89 69 Area 42 AX8 [Phase 3] WNRC104 289409.9 7668671 226.22 0 -90 33 Area 42 AX8 [Phase 3] WNRC105 289395 7668690 227.45 0 -90 36 Area 42 AX8 [Phase 3] WNRC106 289374 7668703 230.05 0 -90 27 Area 42 AX8 [Phase 3] WNRC107 289369.8 7668652 231.46 72 -87 54 Area 42 AX8 [Phase 3] WNRC108 289271.6 7669173 195.7 227 -60 84 Area 42 AX8 [Phase 3] WNRC110 289305 7669170 196.62 230 -60 84 Area 42 AX8 [Phase 3] WNRC112 289186.1 7669246 195.46 250 -60 8									
WNRC103 288761.3 7668437 241.7 60 -89 69 Area 42 AX8 [Phase 3] WNRC104 289409.9 7668671 226.22 0 -90 33 Area 42 AX8 [Phase 3] WNRC105 289395 7668690 227.45 0 -90 36 Area 42 AX8 [Phase 3] WNRC106 289374 7668703 230.05 0 -90 27 Area 42 AX8 [Phase 3] WNRC107 289369.8 7668652 231.46 72 -87 54 Area 42 AX8 [Phase 3] WNRC108 289348.6 7668554 232.86 0 -90 48 Area 42 AX8 [Phase 3] WNRC101 289305 7669109 196.33 245 -58 84 Area 42 AX8 [Phase 3] WNRC112 28936.1 76692070 196.62 230 -60 84 Area 42 AX8 [Phase 3] WNRC113 288951.1 7669390 193.39 230 -50 84									
WNRC104 289409.9 7668671 226.22 0 -90 33 Area 42 AX8 [Phase 3] WNRC105 289395 7668690 227.45 0 -90 36 Area 42 AX8 [Phase 3] WNRC106 289374 7668703 230.05 0 -90 27 Area 42 AX8 [Phase 3] WNRC107 289369.8 7668652 231.46 72 -87 54 Area 42 AX8 [Phase 3] WNRC108 289348.6 766854 232.86 0 -90 48 Area 42 AX8 [Phase 3] WNRC109 289271.6 7669173 195.7 227 -60 84 Area 42 AX8 [Phase 3] WNRC110 289355 7669070 196.62 230 -60 84 Area 42 AX8 [Phase 3] WNRC112 289186.1 7669246 195.46 250 -60 84 Area 42 AX8 [Phase 3] WNRC113 288995.1 7669390 193.39 230 -58 66									
WNRC105 289395 7668690 227.45 0 -90 36 Area 42 AX8 [Phase 3] WNRC106 289374 7668703 230.05 0 -90 27 Area 42 AX8 [Phase 3] WNRC107 289369.8 7668652 231.46 72 -87 54 Area 42 AX8 [Phase 3] WNRC108 289348.6 766854 232.86 0 -90 48 Area 42 AX8 [Phase 3] WNRC109 289271.6 7669173 195.7 227 -60 84 Area 42 AX8 [Phase 3] WNRC110 289305 7669109 196.33 245 -58 84 Area 42 AX8 [Phase 3] WNRC111 28935.9 7669070 196.62 230 -60 84 Area 42 AX8 [Phase 3] WNRC112 289186.1 7668246 195.46 250 -60 84 Area 42 AX8 [Phase 3] WNRC113 288950.1 7668246 234.89 300 -58 6									
WNRC106 289374 7668703 230.05 0 -90 27 Area 42 AX8 [Phase 3] WNRC107 289369.8 7668652 231.46 72 -87 54 Area 42 AX8 [Phase 3] WNRC108 289348.6 7668654 232.86 0 -90 48 Area 42 AX8 [Phase 3] WNRC109 289271.6 7669173 195.7 227 -60 84 Area 42 AX8 [Phase 3] WNRC110 289305 7669109 196.33 245 -58 84 Area 42 AX8 [Phase 3] WNRC111 289305.9 7669070 196.62 230 -60 84 Area 42 AX8 [Phase 3] WNRC112 289186.1 7668246 195.46 250 -60 84 Area 42 AX8 [Phase 3] WNRC114 288784.6 7668424 234.89 300 -58 66 Area 42 AX8 [Phase 3] WNRC115 28890.1 7668279 245.1 0 -90 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
WNRC107 289369.8 7668652 231.46 72 -87 54 Area 42 AX8 [Phase 3] WNRC108 289348.6 7668654 232.86 0 -90 48 Area 42 AX8 [Phase 3] WNRC109 289271.6 7669173 195.7 227 -60 84 Area 42 AX8 [Phase 3] WNRC110 289305 7669109 196.33 245 -58 84 Area 42 AX8 [Phase 3] WNRC111 289335.9 7669070 196.62 230 -60 84 Area 42 AX8 [Phase 3] WNRC112 289186.1 7669246 195.46 250 -60 84 Area 42 AX8 [Phase 3] WNRC113 288995.1 7668424 234.89 300 -58 66 Area 42 AX8 [Phase 3] WNRC115 288900.1 7668279 245.1 0 -90 44 Area 42 AX8 [Phase 3] WNRC116 288877.2 7668261 243.11 0 -90									
WNRC108 289348.6 7668654 232.86 0 -90 48 Area 42 AX8 [Phase 3] WNRC109 289271.6 7669173 195.7 227 -60 84 Area 42 AX8 [Phase 3] WNRC110 289305 7669109 196.33 245 -58 84 Area 42 AX8 [Phase 3] WNRC111 289335.9 7669070 196.62 230 -60 84 Area 42 AX8 [Phase 3] WNRC112 289186.1 7669246 195.46 250 -60 84 Area 42 AX8 [Phase 3] WNRC113 288995.1 7668300 193.39 230 -60 95 Area 42 AX8 [Phase 3] WNRC114 288784.6 7668296 247.83 0 -90 44 Area 42 AX8 [Phase 3] WNRC117 288877.2 7668279 245.1 0 -90 40 Area 42 AX8 [Phase 3] WNRC118 288916.4 7668206 249.01 0 -90 <									
WNRC109289271.67669173195.7227-6084Area 42AX8 [Phase 3]WNRC1102893057669109196.33245-5884Area 42AX8 [Phase 3]WNRC111289335.97669070196.62230-6084Area 42AX8 [Phase 3]WNRC112289186.17669246195.46250-6084Area 42AX8 [Phase 3]WNRC113288995.17669390193.39230-6095Area 42AX8 [Phase 3]WNRC114288784.67668424234.89300-5866Area 42AX8 [Phase 3]WNRC115288900.17668296247.830-9044Area 42AX8 [Phase 3]WNRC11628877.27668279245.10-9040Area 42AX8 [Phase 3]WNRC11728859.57668261243.110-9036Area 42AX8 [Phase 3]WNRC118288916.47668306249.010-9048Area 42AX8 [Phase 3]WNRC1262862857692569206270-6050Area 1AX8 [Phase 4]WNRC1302863007692483209270-6050Area 1AX8 [Phase 4]WNRC131286367692431208270-6050Area 1AX8 [Phase 4]WNRC1322863087692592207270-6050Area 1AX8 [Phase 4]WNRC133286247 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
WNRC110 289305 7669109 196.33 245 -58 84 Area 42 AX8 [Phase 3] WNRC111 289335.9 7669070 196.62 230 -60 84 Area 42 AX8 [Phase 3] WNRC112 289186.1 7669246 195.46 250 -60 84 Area 42 AX8 [Phase 3] WNRC113 288995.1 7669390 193.39 230 -60 95 Area 42 AX8 [Phase 3] WNRC114 288784.6 7668424 234.89 300 -58 66 Area 42 AX8 [Phase 3] WNRC116 28877.2 7668262 247.83 0 -90 44 Area 42 AX8 [Phase 3] WNRC117 288895.5 7668261 243.11 0 -90 40 Area 42 AX8 [Phase 3] WNRC118 288916.4 7668306 249.01 0 -90 48 Area 42 AX8 [Phase 4] WNRC126 286285 7692507 209 270 -60 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
WNRC111 289335.9 7669070 196.62 230 -60 84 Area 42 AX8 [Phase 3] WNRC112 289186.1 7669246 195.46 250 -60 84 Area 42 AX8 [Phase 3] WNRC113 288995.1 7669390 193.39 230 -60 95 Area 42 AX8 [Phase 3] WNRC114 288784.6 7668424 234.89 300 -58 66 Area 42 AX8 [Phase 3] WNRC115 288900.1 7668296 247.83 0 -90 44 Area 42 AX8 [Phase 3] WNRC116 288877.2 7668279 245.1 0 -90 40 Area 42 AX8 [Phase 3] WNRC117 288859.5 7668261 243.11 0 -90 36 Area 42 AX8 [Phase 3] WNRC118 288916.4 7668306 249.01 0 -90 48 Area 42 AX8 [Phase 4] WNRC126 286285 7692536 207 270 -60 50 Area 1 AX8 [Phase 4] WNRC128 286312 7692507									
WNRC112289186.17669246195.46250-6084Area 42AX8 [Phase 3]WNRC113288995.17669390193.39230-6095Area 42AX8 [Phase 3]WNRC114288784.67668424234.89300-5866Area 42AX8 [Phase 3]WNRC115288900.17668296247.830-9044Area 42AX8 [Phase 3]WNRC116288877.27668279245.10-9040Area 42AX8 [Phase 3]WNRC11728859.57668261243.110-9036Area 42AX8 [Phase 3]WNRC118288916.47668306249.010-9048Area 42AX8 [Phase 3]WNRC126286285769259206270-6054Area 1AX8 [Phase 4]WNRC1272863047692536207270-6050Area 1AX8 [Phase 4]WNRC1282863127692507209270-6050Area 1AX8 [Phase 4]WNRC1302863207692483209270-6050Area 1AX8 [Phase 4]WNRC1312863367692431208270-6050Area 1AX8 [Phase 4]WNRC1322863087692592207270-6050Area 1AX8 [Phase 4]WNRC1332862477692679206270-6050Area 1AX8 [Phase 4]WNRC1342862247692685<									
WNRC113288995.17669390193.39230-6095Area 42AX8 [Phase 3]WNRC114288784.67668424234.89300-5866Area 42AX8 [Phase 3]WNRC115288900.17668296247.830-9044Area 42AX8 [Phase 3]WNRC11628877.27668279245.10-9040Area 42AX8 [Phase 3]WNRC11728859.57668261243.110-9036Area 42AX8 [Phase 3]WNRC118288916.47668306249.010-9048Area 42AX8 [Phase 3]WNRC1262862857692569206270-6054Area 1AX8 [Phase 4]WNRC1272863047692536207270-6050Area 1AX8 [Phase 4]WNRC1282863127692507209270-6050Area 1AX8 [Phase 4]WNRC1302863207692483209270-6050Area 1AX8 [Phase 4]WNRC131286387692592207270-6050Area 1AX8 [Phase 4]WNRC1322863087692592207270-6050Area 1AX8 [Phase 4]WNRC1332862477692679206270-6052Area 1AX8 [Phase 4]WNRC1342862247692685205270-6052Area 1AX8 [Phase 4]WNRC1342862247692685 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
WNRC114 288784.6 7668424 234.89 300 -58 66 Area 42 AX8 [Phase 3] WNRC115 288900.1 7668296 247.83 0 -90 44 Area 42 AX8 [Phase 3] WNRC116 288877.2 7668279 245.1 0 -90 40 Area 42 AX8 [Phase 3] WNRC117 288859.5 7668261 243.11 0 -90 36 Area 42 AX8 [Phase 3] WNRC118 288916.4 7668306 249.01 0 -90 48 Area 42 AX8 [Phase 3] WNRC126 286285 7692569 206 270 -60 54 Area 1 AX8 [Phase 4] WNRC127 286304 7692536 207 270 -60 50 Area 1 AX8 [Phase 4] WNRC128 286312 7692507 209 270 -60 50 Area 1 AX8 [Phase 4] WNRC130 286320 7692483 209 270 -60 50 <									
WNRC115 288900.1 7668296 247.83 0 -90 44 Area 42 AX8 [Phase 3] WNRC116 288877.2 7668279 245.1 0 -90 40 Area 42 AX8 [Phase 3] WNRC117 288859.5 7668261 243.11 0 -90 36 Area 42 AX8 [Phase 3] WNRC118 288916.4 7668306 249.01 0 -90 48 Area 42 AX8 [Phase 3] WNRC126 286285 7692569 206 270 -60 54 Area 1 AX8 [Phase 4] WNRC127 286304 7692536 207 270 -60 50 Area 1 AX8 [Phase 4] WNRC128 286312 7692507 209 270 -60 50 Area 1 AX8 [Phase 4] WNRC130 286320 7692483 209 270 -60 50 Area 1 AX8 [Phase 4] WNRC131 286336 7692431 208 270 -60 50 Are			7669390		230	-60	95	Area 42	
WNRC116 288877.2 7668279 245.1 0 -90 40 Area 42 AX8 [Phase 3] WNRC117 288859.5 7668261 243.11 0 -90 36 Area 42 AX8 [Phase 3] WNRC118 288916.4 7668306 249.01 0 -90 48 Area 42 AX8 [Phase 3] WNRC126 286285 7692569 206 270 -60 54 Area 1 AX8 [Phase 4] WNRC127 286304 7692536 207 270 -60 50 Area 1 AX8 [Phase 4] WNRC128 286312 7692507 209 270 -60 50 Area 1 AX8 [Phase 4] WNRC129 286309 7692483 209 270 -60 34 Area 1 AX8 [Phase 4] WNRC130 286320 7692460 209 270 -60 50 Area 1 AX8 [Phase 4] WNRC131 286336 7692431 208 270 -60 50 Area 1<					300		66		
WNRC117 288859.5 7668261 243.11 0 -90 36 Area 42 AX8 [Phase 3] WNRC118 288916.4 7668306 249.01 0 -90 48 Area 42 AX8 [Phase 3] WNRC126 286285 7692569 206 270 -60 54 Area 1 AX8 [Phase 4] WNRC127 286304 7692536 207 270 -60 50 Area 1 AX8 [Phase 4] WNRC128 286312 7692507 209 270 -60 50 Area 1 AX8 [Phase 4] WNRC129 286309 7692483 209 270 -60 50 Area 1 AX8 [Phase 4] WNRC130 286320 7692480 209 270 -60 50 Area 1 AX8 [Phase 4] WNRC131 286336 7692431 208 270 -60 50 Area 1 AX8 [Phase 4] WNRC132 286308 7692592 207 270 -60 50 Area 1 <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td>44</td> <td>Area 42</td> <td></td>					0		44	Area 42	
WNRC118 288916.4 7668306 249.01 0 -90 48 Area 42 AX8 [Phase 3] WNRC126 286285 7692569 206 270 -60 54 Area 1 AX8 [Phase 4] WNRC127 286304 7692536 207 270 -60 50 Area 1 AX8 [Phase 4] WNRC128 286312 7692507 209 270 -60 50 Area 1 AX8 [Phase 4] WNRC129 286309 7692483 209 270 -60 34 Area 1 AX8 [Phase 4] WNRC130 286320 7692460 209 270 -60 50 Area 1 AX8 [Phase 4] WNRC131 286336 7692431 208 270 -60 50 Area 1 AX8 [Phase 4] WNRC132 286308 7692592 207 270 -60 50 Area 1 AX8 [Phase 4] WNRC133 286247 7692679 206 270 -60 50 Area 1	WNRC116	288877.2	7668279	245.1		-90		Area 42	
WNRC126 286285 7692569 206 270 -60 54 Area 1 AX8 [Phase 4] WNRC127 286304 7692536 207 270 -60 50 Area 1 AX8 [Phase 4] WNRC128 286312 7692507 209 270 -60 50 Area 1 AX8 [Phase 4] WNRC129 286309 7692483 209 270 -60 34 Area 1 AX8 [Phase 4] WNRC130 286320 7692460 209 270 -60 50 Area 1 AX8 [Phase 4] WNRC131 286336 7692431 208 270 -60 50 Area 1 AX8 [Phase 4] WNRC132 286308 7692592 207 270 -60 50 Area 1 AX8 [Phase 4] WNRC132 286308 7692592 207 270 -60 50 Area 1 AX8 [Phase 4] WNRC133 286247 7692679 206 270 -60 52 Area 1	WNRC117	288859.5				-90	36		
WNRC127 286304 7692536 207 270 -60 50 Area 1 AX8 [Phase 4] WNRC128 286312 7692507 209 270 -60 50 Area 1 AX8 [Phase 4] WNRC129 286309 7692483 209 270 -60 34 Area 1 AX8 [Phase 4] WNRC130 286320 7692460 209 270 -60 50 Area 1 AX8 [Phase 4] WNRC131 286336 7692431 208 270 -60 50 Area 1 AX8 [Phase 4] WNRC132 286308 7692592 207 270 -60 50 Area 1 AX8 [Phase 4] WNRC132 286308 7692592 207 270 -60 50 Area 1 AX8 [Phase 4] WNRC133 286247 7692679 206 270 -60 52 Area 1 AX8 [Phase 4] WNRC134 286224 7692685 205 270 -60 20 Area 1		288916.4	7668306	249.01	0	-90	48	Area 42	
WNRC128 286312 7692507 209 270 -60 50 Area 1 AX8 [Phase 4] WNRC129 286309 7692483 209 270 -60 34 Area 1 AX8 [Phase 4] WNRC130 286320 7692460 209 270 -60 50 Area 1 AX8 [Phase 4] WNRC131 286336 7692431 208 270 -60 50 Area 1 AX8 [Phase 4] WNRC132 286308 7692592 207 270 -60 50 Area 1 AX8 [Phase 4] WNRC132 286308 7692592 207 270 -60 50 Area 1 AX8 [Phase 4] WNRC133 286247 7692679 206 270 -60 52 Area 1 AX8 [Phase 4] WNRC134 286224 7692685 205 270 -60 20 Area 1 AX8 [Phase 4]	WNRC126	286285	7692569	206	270	-60	54	Area 1	
WNRC129 286309 7692483 209 270 -60 34 Area 1 AX8 [Phase 4] WNRC130 286320 7692460 209 270 -60 50 Area 1 AX8 [Phase 4] WNRC131 286336 7692431 208 270 -60 50 Area 1 AX8 [Phase 4] WNRC131 286308 7692431 208 270 -60 50 Area 1 AX8 [Phase 4] WNRC132 286308 7692592 207 270 -60 50 Area 1 AX8 [Phase 4] WNRC133 286247 7692679 206 270 -60 52 Area 1 AX8 [Phase 4] WNRC134 286224 7692685 205 270 -60 20 Area 1 AX8 [Phase 4]		286304						Area 1	
WNRC130 286320 7692460 209 270 -60 50 Area 1 AX8 [Phase 4] WNRC131 286336 7692431 208 270 -60 50 Area 1 AX8 [Phase 4] WNRC132 286308 7692592 207 270 -60 50 Area 1 AX8 [Phase 4] WNRC132 286247 7692679 206 270 -60 52 Area 1 AX8 [Phase 4] WNRC134 286224 7692685 205 270 -60 52 Area 1 AX8 [Phase 4]	WNRC128	286312	7692507	209	270	-60	50	Area 1	
WNRC131 286336 7692431 208 270 -60 50 Area 1 AX8 [Phase 4] WNRC132 286308 7692592 207 270 -60 50 Area 1 AX8 [Phase 4] WNRC133 286247 7692679 206 270 -60 52 Area 1 AX8 [Phase 4] WNRC134 286224 7692685 205 270 -60 20 Area 1 AX8 [Phase 4]	WNRC129	286309	7692483	209	270	-60	34	Area 1	AX8 [Phase 4]
WNRC132 286308 7692592 207 270 -60 50 Area 1 AX8 [Phase 4] WNRC133 286247 7692679 206 270 -60 52 Area 1 AX8 [Phase 4] WNRC134 286224 7692685 205 270 -60 20 Area 1 AX8 [Phase 4]	WNRC130	286320	7692460	209	270	-60	50	Area 1	
WNRC133 286247 7692679 206 270 -60 52 Area 1 AX8 [Phase 4] WNRC134 286224 7692685 205 270 -60 20 Area 1 AX8 [Phase 4]	WNRC131	286336	7692431	208	270	-60	50	Area 1	AX8 [Phase 4]
WNRC134 286224 7692685 205 270 -60 20 Area 1 AX8 [Phase 4]	WNRC132	286308	7692592	207	270	-60	50	Area 1	AX8 [Phase 4]
	WNRC133	286247	7692679	206	270	-60	52	Area 1	AX8 [Phase 4]
WNRC135 286233 7692664 207 270 -60 24 Area 1 AX8 [Phase 4]	WNRC134	286224	7692685	205	270	-60	20	Area 1	AX8 [Phase 4]
	WNRC135	286233	7692664	207	270	-60	24	Area 1	AX8 [Phase 4]
WNRC136 286258 7692636 209 270 -60 20 Area 1 AX8 [Phase 4]	WNRC136	286258	7692636	209	270	-60	20	Area 1	AX8 [Phase 4]
WNRC137 286376 7692639 212 270 -60 24 Area 1 AX8 [Phase 4]	WNRC137	286376	7692639	212	270	-60	24	Area 1	AX8 [Phase 4]
WNRC138 290279 7685920 231 0 -90 60 Area 3 AX8 [Phase 4]	WNRC138	290279	7685920	231	0	-90	60	Area 3	AX8 [Phase 4]
WNRC139 290267 7685957 233 0 -90 26 Area 3 AX8 [Phase 4]	WNRC139	290267	7685957	233	0	-90	26	Area 3	AX8 [Phase 4]
WNRC140 290251 7685969 235 0 -90 42 Area 3 AX8 [Phase 4]	WNRC140	290251	7685969	235	0	-90	42	Area 3	AX8 [Phase 4]
WNRC141 290227 7685986 232 0 -90 66 Area 3 AX8 [Phase 4]	WNRC141	290227	7685986	232	0	-90	66	Area 3	AX8 [Phase 4]
		290247	7686007	230	0	-90	48	Area 3	AX8 [Phase 4]
				229	0	-90	66		AX8 [Phase 4]
									AX8 [Phase 4]

AX8.com.au

Hole	Easting	Northing	RL	Azi	Decl	Tdepth	Project	Company
WNRC145	290245	7685988	233	0	-90	44	Area 3	AX8 [Phase 4]
WNRC146	290231	7686024	227	270	-60	62	Area 3	AX8 [Phase 4]
WNRC147	290239	7686052	227	0	-90	76	Area 3	AX8 [Phase 4]
WNRC148	290240	7686026	228	0	-90	65	Area 3	AX8 [Phase 4]
WNRC149	290245	7686031	230	60	-60	66	Area 3	AX8 [Phase 4]
WNRC150	291395	7684717	253	0	-90	30	Area 4	AX8 [Phase 4]
WNRC151	291428	7684767	247	0	-90	56	Area 4	AX8 [Phase 4]
WNRC152	291419	7684798	245	0	-90	50	Area 4	AX8 [Phase 4]
WNRC153	291360	7684739	248	0	-90	33	Area 4	AX8 [Phase 4]
WNRC154	288938	7668296	249	0	-90	42	Area 42	AX8 [Phase 4]
WNRC155	288923	7668282	248	0	-90	38	Area 42	AX8 [Phase 4]
WNRC156	288898	7668318	248	0	-90	39	Area 42	AX8 [Phase 4]
WNRC157	288880	7668298	247	0	-90	30	Area 42	AX8 [Phase 4]
WNRC158	288390	7668097	200	0	-90	36	Area 42	AX8 [Phase 4]
WNRC159	288378	7668117	201	0	-90	36	Area 42	AX8 [Phase 4]
WNRC160	288499	7668104	210	0	-90	54	Area 42	AX8 [Phase 4]
WNRC161	288486	7668121	211	0	-90	40	Area 42	AX8 [Phase 4]
WNRC162	288443	7668138	206	0	-90	36	Area 42	AX8 [Phase 4]
WNRC163	288459	7668124	206	0	-90	44	Area 42	AX8 [Phase 4]